Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: Author is Farneti, Brian  [Clear All Filters]
2014
[1562] Farneti, B., N. Busatto, I. Khomenko, L. Cappellin, S. Gutierrez, F. Spinelli, R. Velasco, F. Biasioli, G. Costa, and F. Costa, "Untargeted metabolomics investigation of volatile compounds involved in the development of apple superficial scald by PTR-ToF-MS", Metabolomics, Jul, 2014.
Link: http://dx.doi.org/10.1007/s11306-014-0696-0
Abstract
<p>The superficial scald is an important physiological disorder affecting apple fruit during postharvest storage. To date, the accumulation, and further oxidation, of α-farnesene was considered as the most probable cause for the development of this physiopathy. In order to perform a more broad investigation, a PTR-ToF&ndash;MS (proton transfer reaction&mdash;time of flight&mdash;mass spectrometry) was employed to monitor the volatile organic compounds (VOCs) production along with the progression of this disorder in fruit of &ldquo;Granny Smith&rdquo;, an apple variety known to be highly susceptible to scald. The untargeted metabolite investigation was performed on both skin and pulp, as well as comparing control versus treated tissues with 1-methylcyclopropene (1-MCP), an ethylene competitor widely used to prevent the development of this phenomenon. The rapid and non-destructive analysis of the VOC array carried out by PTR-ToF&ndash;MS identified three specific groups of metabolites in the skin, among which the 6-methyl-5-hepten-2-one (MHO) resulted significantly associated with the development of the superficial scald in apple. The results proposed in this work suggest the use of this novel equipment for an on-line monitoring of the VOCs released by the apple during the postharvest storage, as well as to use MHO as a possible biochemical marker for an early detection of the superficial scald symptoms.</p>
2012
[Farneti2012] Farneti, B., S. M. Cristescu, G. Costa, F. J. M. Harren, and E. J. Woltering, "Rapid tomato volatile profiling by using proton-transfer reaction mass spectrometry (PTR-MS).", J Food Sci, vol. 77, no. 5: Horticultural Supply Chains Group, Wageningen Univ., Droevendaalsesteeg 1, 6708 PD Wageningen, The Netherlands. brian.farneti@gmail.com, pp. C551–C559, May, 2012.
Link: http://dx.doi.org/10.1111/j.1750-3841.2012.02679.x
Abstract
The availability of rapid and accurate methods to assess fruit flavor is of utmost importance to support quality control especially in the breeding phase. Breeders need more information and analytical tools to facilitate selection for complex multigenic traits such as flavor quality. In this study, it is shown that proton-transfer reaction mass spectrometry (PTR-MS) is a suitable method to monitor at high sensitivity the emission of volatiles determining the tomato aromatic profile such as hexanal, hexenals, methanol, ethanol, and acetaldehyde. The volatiles emitted by 14 tomato varieties (at red stage) were analyzed by 2 solvent-free headspace methods: solid-phase microextraction/gas chromatography MS and PTR-MS. Multivariate statistics (principal component analysis and cluster analysis) of the PTR-MS results allow an unambiguous separation between varieties, especially with a clear fingerprinting separation between the different tomato types: round truss, cocktail, and cherry tomatoes. PTR-MS was also successfully used to monitor the changes in volatile profiles during postharvest ripening and storage.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.