Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 4 results
Title [ Year(Asc)]
Filters: Author is Spano, Giuseppe  [Clear All Filters]
2016
[1724] Capozzi, V., S. Makhoul, E. Aprea, A. Romano, L. Cappellin, A. Sanchez Jimena, G. Spano, F. Gasperi, M. Scampicchio, and F. Biasioli, "PTR-{MS} Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin", Molecules, vol. 21, pp. 483, Apr, 2016.
Link: http://dx.doi.org/10.3390/molecules21040483
Abstract
<p>In light of the increasing attention towards &ldquo;green&rdquo; solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.</p>
2015
[1639] Romano, A., V. Capozzi, G. Spano, and F. Biasioli, "Proton transfer reaction-mass spectrometry: online and rapid determination of volatile organic compounds of microbial origin.", Appl Microbiol Biotechnol, vol. 99, pp. 3787–3795, May, 2015.
Link: http://dx.doi.org/10.1007/s00253-015-6528-y
Abstract
<p>Analytical tools for the identification and quantification of volatile organic compounds (VOCs) produced by microbial cultures have countless applications in an industrial and research context which are still not fully exploited. The various techniques for VOC analysis generally arise from the application of different scientific and technological philosophies, favoring either sample throughput or chemical information. Proton transfer reaction-mass spectrometry (PTR-MS) represents a valid compromise between the two aforementioned approaches, providing rapid and direct measurements along with highly informative analytical output. The present paper reviews the main applications of PTR-MS in the microbiological field, comprising food, environmental, and medical applications.</p>
2014
[1565] Makhoul, S., A. Romano, L. Cappellin, G. Spano, V. Capozzi, E. Benozzi, T. D. Märk, E. Aprea, F. Gasperi, H. El-Nakat, et al., "Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters", Journal of Mass Spectrometry, vol. 49, pp. 850--859, Sep, 2014.
Link: http://dx.doi.org/10.1002/jms.3421
Abstract
<p>The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1 g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16 h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds. Copyright &copy; 2014 John Wiley &amp; Sons, Ltd.</p>
[1609] Makhoul, S., A. Romano, L. Cappellin, G. Spano, V. Capozzi, E. Benozzi, T. D. Märk, E. Aprea, F. Gasperi, H. El-Nakat, et al., "Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters.", J Mass Spectrom, vol. 49, pp. 850–859, Sep, 2014.
Link: http://dx.doi.org/10.1002/jms.3421
Abstract
<p>The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1&thinsp;g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16&thinsp;h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.