Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 20 results
Title [ Year(Asc)]
Filters: Author is Feilberg, Anders  [Clear All Filters]
2016
[1738] Hansen, M. J., K. E. N. Jonassen, M. Marie Lokke, A. Peter S. Adamsen, and A. Feilberg, "Multivariate prediction of odor from pig production based on in-situ measurement of odorants", Atmospheric Environment, vol. 135, pp. 50–58, Jun, 2016.
Link: http://dx.doi.org/10.1016/j.atmosenv.2016.03.060
Abstract
<p>The aim of the present study was to estimate a prediction model for odor from pig production facilities based on measurements of odorants by Proton-Transfer-Reaction Mass spectrometry (PTR-MS). Odor measurements were performed at four different pig production facilities with and without odor abatement technologies using a newly developed mobile odor laboratory equipped with a PTR-MS for measuring odorants and an olfactometer for measuring the odor concentration by human panelists. A total of 115 odor measurements were carried out in the mobile laboratory and simultaneously air samples were collected in Nalophan bags and analyzed at accredited laboratories after 24 h. The dataset was divided into a calibration dataset containing 94 samples and a validation dataset containing 21 samples. The prediction model based on the measurements in the mobile laboratory was able to explain 74% of the variation in the odor concentration based on odorants, whereas the prediction models based on odor measurements with bag samples explained only 46&ndash;57%. This study is the first application of direct field olfactometry to livestock odor and emphasizes the importance of avoiding any bias from sample storage in studies of odor-odorant relationships. Application of the model on the validation dataset gave a high correlation between predicted and measured odor concentration (R2 = 0.77). Significant odorants in the prediction models include phenols and indoles. In conclusion, measurements of odorants on-site in pig production facilities is an alternative to dynamic olfactometry that can be applied for measuring odor from pig houses and the effects of odor abatement technologies.</p>
2015
[1612] Feilberg, A., P. Bildsoe, and T. Nyord, "Application of PTR-MS for measuring odorant emissions from soil application of manure slurry.", Sensors (Basel), vol. 15, pp. 1148–1167, 2015.
Link: http://dx.doi.org/10.3390/s150101148
Abstract
<p>Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed.</p>
2014
[1601] Liu, D., M. Marie Løkke, A. Leegaard Riis, K. Mortensen, and A. Feilberg, "Evaluation of clay aggregate biotrickling filters for treatment of gaseous emissions from intensive pig production.", J Environ Manage, vol. 136, pp. 1–8, Apr, 2014.
Link: http://dx.doi.org/10.1016/j.jenvman.2014.01.023
Abstract
<p>Treatment of ventilation air from livestock production by biological airfiltration has emerged as a cost-effective technology for reduction of emissions of odorants and ammonia. Volatile sulfur compounds from livestock production include H2S and methanethiol, which have been identified as potentially important odorants that are not removed sufficiently by biological air filters. Light-expanded clay aggregates (Leca(&reg;)) is a biotrickling filter material that contains iron oxides, which can oxidize H2S and methanethiol, and thus potentially may help to remove these two compounds in biological air filters. This study used on-line PTR-MS measurements to investigate the performances of two Leca(&reg;) biotrickling filters (abraded Leca(&reg;) filter and untreated Leca(&reg;) filter) for removal of odorants and ammonia emitted from an experimental pig house. The results indicated that the abraded Leca(&reg;) filter had a similar or slightly better capability for removing odorants than the untreated Leca(&reg;) filter. This may be due to the enlargement of the surface area by the friction process. The volatile sulfur compounds, however, were not removed efficiently by either of the two Leca(&reg;) filters. Kinetic analysis of a ventilation controlled experiment during the first period indicated that Grau second-order kinetics could be applied to analyze the removal of sulfur compounds and other odorants, whereas the Stover-Kincannon model could only be applied to analyze the removal of odorants other than sulfur compounds, partly due to the limitation of mass transfer of these compounds in the biotrickling filters. In the last measurement period, a production of dimethyl disulfide and dimethyltrisulfide coinciding with strongly enhanced removal of methanethiol was observed for the untreated filter. This was assumed to be enhanced by an incidence of low local air velocity in the filter and indicated involvement of iron-catalyzed reactions in the removal of sulfur compounds.</p>
2013
[Feilberg2013] Feilberg, A., D. Liu, and M. Jørgen Hansen, "Measurement of H2S by PTR-MS: Experiences and implications", CONFERENCE SERIES, pp. 98, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Liu2013] Liu, D., A. Feilberg, A. Michael Nielsen, and A. Peter S. Adamsen, "PTR-MS measurement of partition coefficients of reduced volatile sulfur compounds in liquids from biotrickling filters.", Chemosphere, vol. 90, no. 4: Dept. of Engineering, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark., pp. 1396–1403, Jan, 2013.
Link: http://dx.doi.org/10.1016/j.chemosphere.2012.07.068
Abstract
Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry's law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3-45°C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H(2)S, a higher enthalpy of air-liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength.
[Hansen2013] Hansen, M. Jørgen, A. Peter S. Adamsen, and A. Feilberg, "Recovery of Odorants from an Olfactometer Measured by Proton-Transfer-Reaction Mass Spectrometry", Sensors, vol. 13, no. 6: Multidisciplinary Digital Publishing Institute, pp. 7860–7871, 2013.
Link: http://www.mdpi.com/1424-8220/13/6/7860
Abstract
The aim of the present study was to examine the recovery of odorants during the dilution in an olfactometer designed according to the European standard for dynamic olfactometry. Nine odorants in the ppmv-range were examined including hydrogen sulfide, methanethiol, dimethyl sulfide, acetic acid, propanoic acid, butanoic acid, trimethylamine, 3-methylphenol and n-butanol. Each odorant was diluted in six dilution steps in descending order from 4,096 to 128 times dilutions. The final recovery of dimethyl sulfide and n-butanol after a 60-second pulse was only slightly affected by the dilution, whereas the recoveries of the other odorants were significantly affected by the dilution. The final recoveries of carboxylic acids, trimethylamine and 3-methylphenol were affected by the pulse duration and the signals did not reach stable levels within the 60-second pulse, while sulfur compounds and n-butanol reach a stable signal within a few seconds. In conclusion, the dilution of odorants in an olfactometer has a high impact on the recovery of odorants and when olfactometry is used to estimate the odor concentration, the recoveries have to be taken into consideration for correct measurements.
2012
[Hansen2012a] Hansen, M. J., D. Liu, L. Bonne Guldberg, and A. Feilberg, "Application of proton-transfer-reaction mass spectrometry to the assessment of odorant removal in a biological air cleaner for pig production.", J Agric Food Chem, vol. 60, no. 10: Department of Engineering, Faculty of Science and Technology, Aarhus University, Tjele, Denmark. michaelj.hansen@agrsci.dk, pp. 2599–2606, Mar, 2012.
Link: http://dx.doi.org/10.1021/jf300182c
Abstract
There is an urgent need to develop odor reduction technologies for animal production facilities, and this requires a reliable measurement technique for estimating the removal of odorants. The purpose of the present experiment was to investigate the application of proton-transfer-reaction mass spectrometry (PTR-MS) for continuous measurements at a biofilter from SKOV A/S installed at a pig production facility. PTR-MS was able to handle the harsh conditions with high humidity and dust load in a biofilter and provide reliable data for the removal of odorants, including the highly odorous sulfur compounds. The biofilter removed 80-99% of carboxylic acids, aldehydes, ketones, phenols, and indoles and ca. 75% of hydrogen sulfide. However, only  0-15% of methanethiol and dimethyl sulfide was removed. In conclusion, PTR-MS is a promising tool that can be used to improve the development of biological air cleaning and other odor reduction technologies toward significant odorants.
[Hansen2012c] Hansen, M. J., A. P. S. Adamsen, K. E. N. Jonassen, and A. Feilberg, "The effect of pit ventilation on the emission of odorants from pig production", CHEMICAL ENGINEERING, vol. 30, 2012.
Link: http://www.aidic.it/cet/12/30/039.pdf
[Hansen2012] Hansen, M. J. Ã. ¸rgen, K. Toda, T. Obata, A. Peter S. Adamsen, and A. Feilberg, "Evaluation of single column trapping/separation and chemiluminescence detection for measurement of methanethiol and dimethyl sulfide from pig production.", J Anal Methods Chem, vol. 2012: Department of Engineering, Science and Technology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark., pp. 489239, 2012.
Link: http://dx.doi.org/10.1155/2012/489239
Abstract
Reduced sulfur compounds are considered to be important odorants from pig production due to their low odor threshold values and low solubility in slurry. The objective of the present study was to investigate the use of a portable method with a single silica gel column for trapping/separation coupled with chemiluminescence detection (SCTS-CL) for measurement of methanethiol and dimethyl sulfide in sample air from pig production. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to evaluate the trapping/separation. The silica gel column used for the SCTS-CL efficiently collected hydrogen sulfide, methanethiol and dimethyl sulfide. The measurement of methanethiol by SCTS-CL was clearly interfered by the high concentration of hydrogen sulfide found in pig production, and a removal of hydrogen sulfide was necessary to obtain reliable results. Air samples taken from a facility with growing-finishing pigs were analyzed by SCTS-CL, PTR-MS, and a gas chromatograph with sulfur chemiluminescence detection (GC-SCD) to evaluate the SCTS-CL. The difference between the concentrations of methanethiol and dimethyl sulfide measured with SCTS-CL, PTR-MS, and GC-SCD was below 10%. In conclusion, the SCTS-CL is a portable and low-cost alternative to the commercial methods that can be used to measure methanethiol and dimethyl sulfide in sample air from pig production.
[Loekke2012] Loekke, M. Marie, M. Edelenbos, E. Larsen, and A. Feilberg, "Investigation of Volatiles Emitted from Freshly Cut Onions (Allium cepa L.) by Real Time Proton-Transfer Reaction-Mass Spectrometry (PTR-MS).", Sensors (Basel), vol. 12, no. 12: Department of Engineering, Aarhus University, Blichers Allé 20, P.O. Box 50, Tjele DK-8830, Denmark. Anders.Feilberg@agrsci.dk., pp. 16060–16076, 2012.
Link: http://dx.doi.org/10.3390/s121216060
Abstract
Volatile organic compounds (VOCs) in cut onions (Allium cepa L.) were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor) and breakdown products of this compound dominated 0-10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration.
[Andersen2012] Andersen, K. Barkve, M. J. Ã. ¸rgen Hansen, and A. Feilberg, "Minimisation of artefact formation of dimethyl disulphide during sampling and analysis of methanethiol in air using solid sorbent materials.", J Chromatogr A, vol. 1245: Applied Plasma Physics AS, Bedriftsveien 25, PO Box 584, 4305 Sandnes, Norway., pp. 24–31, Jul, 2012.
Link: http://dx.doi.org/10.1016/j.chroma.2012.05.020
Abstract
Methanethiol (MT) is a potent odorant that can be difficult to measure due to its high volatility and reactivity; it easily reacts to form dimethyl disulphide (DMDS) during sampling and/or analysis. This paper focuses on finding an optimal method for sampling and measuring MT with minimum artefact formation using sorbent materials and a thermal desorption-gas chromatography-mass spectrometry method (TD-GC-MS). Experiments were conducted to identify suitable sorbent materials and tubes for analysis. Breakthrough, desorption rate, the effects of storage and desorption temperatures were investigated and different drying methods were established with respect to quantitative sampling and formation of DMDS. Proton-transfer-reaction mass spectrometry (PTR-MS) was used in the development of the method and was an especially useful tool for determination of breakthrough. The results show that glass tubes packed with silica gel for pre-concentration of MT before analysis with TD-GC-MS give the best results. In addition, a combination of Tenax TA and carbonised molecular sieve or Tenax TA cooled to 0 °C gives acceptable results. 80 °C was found to be the optimal desorption temperature. For all the sampling methods tested, storage conditions were observed to be very critical for transformation of MT. Room temperature storage should be limited to few minutes and, in general, tubes should be kept at 0°C or lower during storage.
[Feilberg2012] Feilberg, A., D. Liu, C. Lunde Pedersen, and M. Jørgen Hansen, "Optimization of Biological Air Filters for Livestock Production Facilities", International conference on environmental odour monitoring and control, 2012.
Link: http://pure.au.dk/portal/en/activities/optimization-of-biological-air-filters-for-livestock-production-facilities(3a3304cb-6664-4fd6-810f-5a040cd26fe7).html
[Hansen2012b] Hansen, M. J., A. Peter S. Adamsen, P. Pedersen, and A. Feilberg, "Prediction of odor from pig production based on chemical odorants.", J Environ Qual, vol. 41, no. 2: Department of Engineering, Aarhus Uninversity, Denmark. michealj.hansen@agrsci.dk, pp. 436–443, 2012.
Link: http://dx.doi.org/10.2134/jeq2011.0253
Abstract
The present work was performed to investigate the use of odorant measurements for prediction of odor concentration in facilities with growing-finishing pigs and to analyze the odorant composition in facilities with different floor and ventilation systems. Air was sampled in Nalophan bags, odor concentrations were measured by dilution-to-threshold olfactometry, and concentrations of odorants were measured by proton-transfer-reaction mass spectrometry (PTR-MS). Olfactometry and chemical analyses were synchronized to take place at identical time intervals after sampling. A principal component analysis revealed that different facilities for growing-finishing pigs can be distinguished based on the odorants. Pit ventilation comprising a small amount of the total ventilation air (10-20%) in facilities with both room and pit ventilation can be used to concentrate odorants, whereas the room ventilation contains lower concentrations of most odorants. A partial least squares regression model demonstrated that prediction of the odor concentration based on odorants measured by PTR-MS is feasible. Hydrogen sulfide, methanethiol, trimethylamine, and 4-methylphenol were identified as the compounds having the largest influence on the prediction of odor concentration, whereas carboxylic acids had no significant influence. In conclusion, chemical measurement of odorants by PTR-MS is an alternative for expressing the odor concentration in facilities with growing-finishing pigs that can be used to increase the understanding of odor from different types of facilities and improve the development of odor reduction technologies.
2011
[Liu2011] Liu, D., A. Feilberg, A. P. S. Adamsen, and K. E. N. Jonassen, "The effect of slurry treatment including ozonation on odorant reduction measured by in-situ PTR-MS", Atmospheric Environment, vol. 45, no. 23: Elsevier, pp. 3786–3793, 2011.
Link: http://www.sciencedirect.com/science/article/pii/S1352231011004067
Abstract
The emission of odorous compounds from intensive pig production facilities is a nuisance for neighbors. Slurry ozonation for odor abatement has previously been demonstrated in laboratory scale. In this study, the effect of slurry ozonation (combined with solid–liquid pre-separation and acidification) on emissions of odorous compounds was tested in an experimental full-scale growing pig facility using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for online analysis of odorants. The measurements were performed to gain a better understanding of the effects of ozone treatment on emissions odorous compounds and to identify potential options for optimization of ozone treatment. The compounds monitored included volatile sulfur compounds, amine, carboxylic acids, ketones, phenols and indoles. Measurements were performed during nearly a one-month period in summertime. The compounds with the highest concentrations observed in the ventilation exhaust duct were acetic acid, hydrogen sulfide, propanoic acid and butanoic acid. The compounds with the highest removal efficiencies were hydrogen sulfide, 3-methyl-indole, phenol and acetic acid. Based on odor threshold values, methanethiol, butanoic acid, 4-methylphenol, hydrogen sulfide and C5 carboxylic acids are estimated to contribute significantly to the odor nuisance. Emissions of odorous compounds were observed to be strongly correlated with temperature with the exception of hydrogen sulfide. Emission peaks of sulfur compounds were seen during slurry handling activities. Discharging of the slurry pit led to reduced hydrogen sulfide emissions, but emissions of most other odorants were not affected. The results indicate that emissions of odorants other than hydrogen sulfide mainly originate from sources other than the treated slurry, which limits the potential for further optimization. The PTR-MS measurements are demonstrated to provide a quantitative, accurate and detailed evaluation of ozone treatment for emission reduction.
[Saha2011] Saha, C. Kumer, A. Feilberg, G. Zhang, and A. Peter S. Adamsen, "Effects of airflow on odorants' emissions in a model pig house - A laboratory study using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS).", Sci Total Environ, vol. 410-411: Department of Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark. cksahabau@yahoo.com, pp. 161–171, Dec, 2011.
Link: http://dx.doi.org/10.1016/j.scitotenv.2011.09.017
Abstract
Identification of different factors that affect emissions of gasses, including volatile organic compounds (VOCs) is necessary to develop emission abatement technology. The objectives of this research were to quantify and study temporal variation of gas emissions from a model pig house under varying ventilation rates. The used model was a 1:12.5 scale of a section of a commercial finishing pig house. The VOC concentrations at inlet, outlet, and slurry pit of the model space were measured using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). PTR-MS can measure the temporal variations of odor compounds' emission from the slurry pit in real time. The emissions of H(2)S and 14 VOCs were lower compared to real pig buildings except for ammonia, which indicated possible other sources of those compounds than the slurry in the slurry pit. The ventilation rate affected significantly on ammonia and trimethylamine emission (p<0.05). The hydrogen sulfide (H(2)S) emission was independent of the ventilation rate. VFAs' emission dependency on ventilation rate increased with the increase of carbon chain. Phenols, indoles and ketones showed the positive correlation with ventilation rate to some extent. Generally, compounds with high solubility (low Henry's constant) showed stronger correlation with ventilation rates than the compounds with high Henry's constant.
[Hansen2011] Hansen, M. J., A. P. S. Adamsen, A. Feilberg, and K. E. N. Jonassen, "Stability of odorants from pig production in sampling bags for olfactometry", Journal of environmental quality, vol. 40, no. 4: The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc., pp. 1096–1102, 2011.
Link: https://dl.sciencesocieties.org/publications/jeq/abstracts/40/4/1096
Abstract
Odor from pig production facilities is typically measured with olfactometry, whereby odor samples are collected in sampling bags and assessed by human panelists within 30 h. In the present study, the storage stability of odorants in two types of sampling bags that are often used for olfactometry was investigated. The bags were made of Tedlar or Nalophan. In a field experiment, humid and dried air samples were collected from a pig production facility with growing-finishing pigs and analyzed with a gas chromatograph with an amperometric sulfur detector at 4, 8, 12, 28, 52, and 76 h after sampling. In a laboratory experiment, the bags were filled with a humid gas mixture containing carboxylic acids, phenols, indoles, and sulfur compounds and analyzed with proton-transfer-reaction mass spectrometry after 0, 4, 8, 12, and 24 h. The results demonstrated that the concentrations of carboxylic acids, phenols, and indoles decreased by 50 to >99% during the 24 h of storage in Tedlar and Nalophan bags. The concentration of hydrogen sulfide decreased by approximately 30% during the 24 h of storage in Nalophan bags, whereas in Tedlar bags the concentration of sulfur compounds decreased by <5%. In conclusion, the concentrations of odorants in air samples from pig production facilities significantly decrease during storage in Tedlar and Nalophan bags, and the composition changes toward a higher relative presence of sulfur compounds. This can result in underestimation of odor emissions from pig production facilities and of the effect of odor reduction technologies.
2010
[Feilberg2010b] Feilberg, A., A. Peter S. Adamsen, D. Liu, M. Jørgen Hansen, and P. Bildsøe, "Effects of air Exchange, Temperature and slurry management on odorant Emissions from pig Production units and slurry tanks studied by Proton-Transfer-Reaction mass spectometry (PTR-MS)", World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR), 2010.
Link: http://www.csbe-scgab.ca/docs/meetings/2010/CSBE101079.pdf
[Feilberg2010] Feilberg, A., D. Liu, A. P. S. Adamsen, M. J. Hansen, and K. E. N. Jonassen, "Odorant emissions from intensive pig production measured by online proton-transfer-reaction mass spectrometry.", Environ Sci Technol, vol. 44, no. 15: Department of Biosystems Engineering, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark. anders.feilberg@agrsci.dk, pp. 5894–5900, Aug, 2010.
Link: http://dx.doi.org/10.1021/es100483s
Abstract
Emission of odorous compounds from intensive livestock production is a cause of nuisance in populated rural areas. Knowledge on the chemical composition of odor and temporal variations in emissions are needed in order to identify factors of importance for emission rates and select proper abatement technologies. In this work, a method based on proton-transfer-reaction mass spectrometry (PTR-MS) has been developed and tested for continuous measurements of odorant emissions from intensive pig production facilities. The method is assessed to cover all presently known important odorants from this type of animal production with adequate sensitivity and a time resolution of less than one minute. The sensitivity toward hydrogen sulfide is demonstrated to exhibit a pronounced humidity dependency, which can be included in the calibration procedure in order to achieve quantitative results for this compound. Application of the method at an experimental pig facility demonstrated strong temporal variations in emissions, including diurnal variation. Based on these first results, air exchange and animal activity are suggested to be of importance for emission rates of odorants. Highest emissions are seen for hydrogen sulfide and acetic acid, whereas key odorants are evaluated from tabulated odor threshold values to be hydrogen sulfide, methanethiol, 4-methylphenol, and butanoic acid.
[Feilberg2010a] Feilberg, A., N. Dorno, and T. Nyord, "Odour emissions following land spreading of animal slurry assessed by proton-transfer-reaction mass spectrometry (PTR-MS)", Chemical Engineering Transactions, vol. 23, 2010.
Link: http://www.aidic.it/cet/10/23/019.pdf
[Hansen2010] Hansen, M. Jørgen, A. Feilberg, and A. Peter S. Adamsen, "Stability of volatile reduced sulphur compounds in the dilution system of an olfactometer", Chem. Eng. Trans, vol. 23, pp. 67–72, 2010.
Link: http://www.aidic.it/cet/10/23/012.pdf

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.