Callback Service


The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Asc)]
Filters: Author is Holopainen, Jarmo K.  [Clear All Filters]
[1701] Maja, M. M., A. Kasurinen, P. Yli-Pirilä, J. Joutsensaari, T. Klemola, T. Holopainen, and J. K. Holopainen, "Contrasting responses of silver birch VOC emissions to short- and long-term herbivory.", Tree Physiol, vol. 34, pp. 241–252, Mar, 2014.
<p>There is a need to incorporate the effects of herbivore damage into future models of plant volatile organic compound (VOC) emissions at leaf or canopy levels. Short-term (a few seconds to 48 h) changes in shoot VOC emissions of silver birch (Betula pendula Roth) in response to feeding by geometrid moths (Erannis defoliaria Hübner) were monitored online by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS). In addition, two separate field experiments were established to study the effects of long-term foliage herbivory (FH, 30-32 days of feeding by geometrids Agriopis aurantiaria (Clerck) and E. defoliaria in two consecutive years) and bark herbivory (BH, 21 days of feeding by the pine weevil (Hylobius abietis L.) in the first year) on shoot and rhizosphere VOC emissions of three silver birch genotypes (gt14, gt15 and Hausjärvi provenance). Online monitoring of VOCs emitted from foliage damaged by geometrid larvae showed rapid bursts of green leaf volatiles (GLVs) immediately after feeding activity, whereas terpenoid emissions had a tendency to gradually increase during the monitoring period. Long-term FH caused transient increases in total monoterpene (MT) emissions from gt14 and sesquiterpene (SQT) emissions from Hausjärvi provenance, mainly in the last experimental season. In the BH experiment, genotype effects were detected, with gt14 trees having significantly higher total MT emissions compared with other genotypes. Only MTs were detected in the rhizosphere samples of both field experiments, but their emission rates were unaffected by genotype or herbivory. The results suggest that silver birch shows a rapid VOC emission response to short-term foliage herbivory, whereas the response to long-term foliage herbivory and bark herbivory is less pronounced and variable at different time points.</p>
[Schaub2010] Schaub, A., J. D. Blande, M. Graus, E. Oksanen, J. K. Holopainen, and A. Hansel, "Real-time monitoring of herbivore induced volatile emissions in the field.", Physiol Plant, vol. 138, no. 2: Ionicon Analytik GmbH, Technikerstrasse 21a, 6020 Innsbruck, Austria., pp. 123–133, Feb, 2010.
When plants are damaged by herbivorous insects they emit a blend of volatile organic compounds (VOCs) which include a range or terpenoids and green leaf volatiles (GLVs) formed via different metabolic pathways. The precise timing of these emissions upon the onset of herbivore feeding has not been fully elucidated, and the information that is available has been mainly obtained through laboratory based studies. We investigated emissions of VOCs from Populus tremula L. xP. tremuloides Michx. during the first 20 h of feeding by Epirrita autumnata (autumnal moth) larvae in a field site. The study was conducted using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) to measure emissions online, with samples collected for subsequent analysis by complementary gas chromatography-mass spectrometry for purposes of compound identification. GLV emission peaks occurred sporadically from the outset, indicating herbivore activity, while terpene emissions were induced within 16 h. We present data detailing the patterns of monoterpene (MT), GLV and sesquiterpene (SQT) emissions during the early stages of herbivore feeding showing diurnal MT and SQT emission that is correlated more with temperature than light. Peculiarities in the timing of SQT emissions prompted us to conduct a thorough characterization of the equipment used to collect VOCs and thus corroborate the accuracy of results. A laboratory based analysis of the throughput of known GLV, MT and SQT standards at different temperatures was made with PTR-MS. Enclosure temperatures of 12, 20 and 25 degrees C had little influence on the response time for dynamic measurements of a GLV or MT. However, there was a clear effect on SQT measurements. Elucidation of emission patterns in real-time is dependent upon the dynamics of cuvettes at different temperatures.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.