Callback Service


The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 3 results
Title [ Year(Asc)]
Filters: Author is Mancuso, Stefano  [Clear All Filters]
[1702] Masi, E., A. Romani, C. Pandolfi, D. Heimler, and S. Mancuso, "PTR-TOF-MS analysis of volatile compounds in olive fruits.", J Sci Food Agric, vol. 95, pp. 1428–1434, May, 2015.
<p>Volatile compounds of Cellina di Nardò and Ogliarola Barese, two typical Italian olive varieties, have been characterised at different ripening stages. Proton transfer reaction-time-of-flight-mass spectrometry (PTR-TOF-MS) was used for the first time on these fruits with the aim of characterising the volatile profile and, in the case of Ogliarola, the changes which may occur during the maturation process.PTR-TOF-MS does not involve any sample pre-treatment, and allows high-resolution measurements, large spectra and small fragmentation of the volatiles. Therefore it allows both compound identification and data statistical treatments. In the present work, about 40 compounds that contribute to the discrimination between samples of the two varieties have been identified.Three groups of compounds were identified: (1) compounds that are typical of mature fruits of Ogliarola, (2) compounds that tend to decrease during the change from green to mature fruits, and (3) compounds that increase during the maturation process.</p>
[1732] Mancuso, S., C. Taiti, N. Bazihizina, C. Costa, P. Menesatti, L. Giagnoni, M. Arenella, P. Nannipieri, and G. Renella, "Soil volatile analysis by proton transfer reaction-time of flight mass spectrometry (PTR-TOF-{MS})", Applied Soil Ecology, vol. 86, pp. 182¬タモ191, Feb, 2015.
<p>We analyzed the volatile organic compounds (VOCs) emitted from different soils by using the PTR-MS-TOF technique under laboratory conditions and compared them with soil chemical biochemical activities. The emitted VOCs were related to soil microbial biomass, soil respiration and some soil enzyme activities so as to evaluate if size and activity of soil microbial communities influenced the soil VOCs profiles. Our results showed that the emitted VOCs discriminated between soils with different properties and management, and differences in the VOCs emission profiles were likely related to the active metabolic pathways in the microbial communities of the three studied soil. Our results also showed that some soil enzyme activities such as β-glucosidase and arylsulfatase were possibly involved in the release of compounds fueling microbial metabolic pathways leading to the production of specific VOCs. It was concluded that the PTR-MS-TOF technique is suitable for analyze VOCs emission from soil and that studies comparing soil enzyme activities and soil volatile profiles can reveal the origin of VOCs and give further insights on microbial activity and soil functionality.</p>
[1605] Taiti, C., C. Costa, P. Menesatti, D. Comparini, N. Bazihizina, E. Azzarello, E. Masi, and S. Mancuso, "Class-modeling approach to PTR-TOFMS data: a peppers case study.", J Sci Food Agric, May, 2014.
<p>Proton transfer reaction-mass spectrometry (PTR-MS), in its recently developed implementation based on time-of-flight mass spectrometry (PTR-TOFMS), was used to rapidly determine the volatile compounds present in fruits of Capsicum spp.We analyzed the volatile organic compounds emission profile of freshly cut chili peppers belonging to three species and 33 different cultivars. PTR-TOFMS data, analyzed with appropriate and advanced multivariate class-modeling approaches, perfectly discriminated among the three species (100% correct classification in validation set). VIP (variable importance in projection) scores were used to select the 15 most important volatile compounds in discriminating the species. The best candidates for Capsicum spp. were compounds with measured m/z of 63.027, 101.096 and 107.050, which were, respectively, tentatively identified as dimethyl sulfide, hexanal and benzaldehyde.Based on the promising results, the possibility of introducing multivariate class-modeling techniques, different from the classification approaches, in the field of volatile compounds analyses is discussed. &copy; 2014 Society of Chemical Industry.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.