Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 3 results
Title [ Year(Asc)]
Filters: Author is Temime-Roussel, Brice  [Clear All Filters]
2016
[1717] Klein, F., S. M. Platt, N. J. Farren, A. Detournay, E. A. Bruns, C. Bozzetti, K. R. Daellenbach, D. Kilic, N. K. Kumar, S. M. Pieber, et al., "Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Cooking Emissions.", Environ Sci Technol, vol. 50, pp. 1243–1250, Feb, 2016.
Link: http://dx.doi.org/10.1021/acs.est.5b04618
Abstract
<p>Cooking processes produce gaseous and particle emissions that are potentially deleterious to human health. Using a highly controlled experimental setup involving a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), we investigate the emission factors and the detailed chemical composition of gas phase emissions from a broad variety of cooking styles and techniques. A total of 95 experiments were conducted to characterize nonmethane organic gas (NMOG) emissions from boiling, charbroiling, shallow frying, and deep frying of various vegetables and meats, as well as emissions from vegetable oils heated to different temperatures. Emissions from boiling vegetables are dominated by methanol. Significant amounts of dimethyl sulfide are emitted from cruciferous vegetables. Emissions from shallow frying, deep frying and charbroiling are dominated by aldehydes of differing relative composition depending on the oil used. We show that the emission factors of some aldehydes are particularly large which may result in considerable negative impacts on human health in indoor environments. The suitability of some of the aldehydes as tracers for the identification of cooking emissions in ambient air is discussed.</p>
2015
[1679] Hayeck, N., B. Temime-Roussel, S. Gligorovski, A. Mizzi, R. Gemayel, S. Tlili, P. Maillot, N. Pic, T. Vitrani, I. Poulet, et al., "Monitoring of organic contamination in the ambient air of microelectronic clean room by proton-transfer reaction/time-of-flight/mass spectrometry (PTR-ToF-MS)", International Journal of Mass Spectrometry, Oct, 2015.
Link: http://dx.doi.org/10.1016/j.ijms.2015.09.017
Abstract
<p>The organic contamination has been recently considered as the most important problem for the photolithography world in the semiconductor industry, especially when the photolithographic methods moved from 130 nm node to 32 nm node. One of the most common organic compounds found in photolithography areas of the clean room is Trimethylsilanol (TMS), which can adsorb on the optical lenses forming a thin molecular layer, hence causing damages. Salt crystal formation is another potential threat for the optical devices. In the clean rooms, this salt is produced by a light-induced reaction between ammonia and an acid. In the context of semiconductor industry, the involved acid is usually the acetic acid produced by hydrolysis from propylene glycol methyl ether acetate (PGMEA), a commonly used organic compound in the photolithography. Here, we present an innovative analytical method using a state-of-the-art proton-transfer reaction&ndash;time-of-flight&ndash;mass spectrometer (PTR&ndash;ToF&ndash;MS) for on-line and continuous survey of volatile organic compounds (VOCs) with an emphasis on TMS and PGMEA. The effect of relative humidity on the detection and fragmentation of these organic compounds was assessed. The new analytical method is operated in a real life clean room environment and the results were compared with those obtained with off-line measurements using automated thermal desorber&ndash;gas chromatography&ndash;mass spectrometry (ATD&ndash;GC&ndash;MS) as reference method. The contamination sources were detected and identified, which is of paramount importance for the microelectronic fabrication plant. The trapping efficiency of the chemical filters used for AMCs filtration in the photolithography zone was determined.</p>
2012
[Vesin2012] Vesin, A., G. Bouchoux, E. Quivet, B. Temime-Roussel, and H. Wortham, "Use of the HS-PTR-MS for online measurements of pyrethroids during indoor insecticide treatments.", Anal Bioanal Chem, vol. 403, no. 7: Aix-Marseille Univ, LCE-IRA, 13331 Marseille, France., pp. 1907–1921, Jun, 2012.
Link: http://dx.doi.org/10.1007/s00216-012-6003-x
Abstract
A high-sensitivity proton transfer reaction mass spectrometer (HS-PTR-MS) has been used to study the temporal evolution of pesticide concentrations in indoor environments. Because of the high time variability of the indoor air concentrations during household pesticide applications, the use of this online high time resolution instrument is found relevant. Four pyrethroid pesticides of the latest generation that are commonly found in electric vaporizer refills, namely, transfluthrin, empenthrin, tetramethrin, and prallethrin, were considered. A controlled pesticide generation system was settled and coupled to a HS-PTR-MS analyzer, and a calibration procedure based on the fragmentation patterns of the protonated molecules was performed. To illustrate the functionality of the method, measurements of the concentration-time profiles of transfluthrin contained in an electric vaporizer were carried out in a full-scale environmental room under air exchange rate-controlled conditions. This study demonstrates that the HS-PTR-MS technique can provide online and high time-resolved measurements of semi-volatile organic compounds such as pyrethroid insecticides.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.