[Kirsch2012]
Kirsch, F., J. Beauchamp, and A. Buettner,
"Time-dependent aroma changes in breast milk after oral intake of a pharmacological preparation containing 1,8-cineole.",
Clin Nutr, vol. 31, no. 5: Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University Erlangen-Nuremberg, 91052 Erlangen, Germany., pp. 682–692, Oct, 2012.
Link:
http://dx.doi.org/10.1016/j.clnu.2012.02.002
This study investigates time-dependent aroma changes in human milk after intake of an odorant-containing pharmaceutical preparation by correlating sensory evaluation with quantitative results.Human milk donors ingested 100 mg of encapsulated 1,8-cineole. 21 milk samples from 12 participants underwent sensory analysis, of which 14 samples were quantified by stable isotope dilution assay (SIDA) analysis. Furthermore, several consecutive breast milk and exhaled breath gas samples from one volunteer after intake of 1,8-cineole were analysed by proton-transfer-reaction mass spectrometry (PTR-MS) and sensory evaluation on three separate days.The emergence of the characteristic eucalyptus-like odour of 1,8-cineole in exhaled breath after capsule ingestion coincided with its transfer into milk; its presence in breath was therefore used to indicate the time at which milk should be expressed for gathering samples. Odorant transfer could not be confirmed by sensory analysis in 7 of the 21 milk samples, most likely due to disadvantageous timing of milk expression. The other 14 samples exhibited a distinct eucalyptus-like odour. Quantitative results matched these observations with <20 ?g/kg 1,8-cineole in the odourless samples and 70 to an estimated 2090 ?g/kg 1,8-cineole in the other samples.Transfer of 1,8-cineole into human milk after oral intake is time dependent and exhibits large inter and intra-individual differences.
[Benjamin2012]
Benjamin, O.., P.. Silcock, J.. Beauchamp, A.. Buettner, and D.. W. Everett,
"Tongue pressure and oral conditions affect volatile release from liquid systems in a model mouth.",
J Agric Food Chem, vol. 60, no. 39: Riddet Institute, Massey University , Palmerston North 4442, New Zealand. ofir.benjamin@otago.ac.nz, pp. 9918–9927, Oct, 2012.
Link:
http://dx.doi.org/10.1021/jf3028232
The release of volatile organic compounds (VOCs) into the mouth cavity is an integral part of the way flavor is perceived. An in vitro model mouth with an artificial tongue was developed to measure the dynamic release of VOCs from liquid model systems [e.g., aqueous solution, oil, and oil-in-water (O/W) emulsions] under oral conditions. The release of seven selected VOCs was affected by the different polarity and vapor pressure of the compounds and their affinity to the liquid system media. Different tongue pressure patterns were applied to the liquid systems, and the release of VOCs was monitored in real time using proton transfer reaction-mass spectrometry. The release was significantly more intense for longer tongue pressure duration and was influenced by the tongue altering the sample surface area and the distribution of the VOCs. The role of saliva (artificial versus human) and the sample temperature had a significant effect on VOC release. Saliva containing mucin and a higher sample temperature enhanced the release.
[Dolgorouky2012]
Dolgorouky, C., V. Gros, R. Sarda-Esteve, V. Sinha, J. Williams, N. Marchand, S. Sauvage, L. Poulain, J. Sciare, and B. Bonsang,
"Total OH reactivity measurements in Paris during the 2010 MEGAPOLI winter campaign",
Atmospheric Chemistry and Physics, vol. 12, no. 20: Copernicus GmbH, pp. 9593–9612, 2012.
Link:
http://www.atmos-chem-phys.net/12/9593/2012/
Hydroxyl radicals play a central role in the troposphere as they control the lifetime of many trace gases. Measurement of OH reactivity (OH loss rate) is important to better constrain the OH budget and also to evaluate the completeness of measured VOC budget. Total atmospheric OH reactivity was measured for the first time in an European Megacity: Paris and its surrounding areas with 12 million inhabitants, during the MEGAPOLI winter campaign 2010. The method deployed was the Comparative Reactivity Method (CRM). The measured dataset contains both measured and calculated OH reactivity from CO, NOx and VOCs measured via PTR-MS, GC-FID and GC-MS instruments. The reactivities observed in Paris covered a range from 10 s−1 to 130 s−1, indicating a large loading of chemical reactants. The present study showed that, when clean marine air masses influenced Paris, the purely local OH reactivity (20 s−1) is well explained by the measured species. Nevertheless, when there is a continental import of air masses, high levels of OH reactivity were obtained (120–130 s−1) and the missing OH reactivity measured in this case jumped to 75%. Using covariations of the missing OH reactivity to secondary inorganic species in fine aerosols, we suggest that the missing OH reactants were most likely highly oxidized compounds issued from photochemically processed air masses of anthropogenic origin.
[Danner2012]
Danner, H., D. Samudrala, S. M. Cristescu, and N. M. { van Dam},
"Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS).",
J Chem Ecol, vol. 38, no. 6: Department of Ecogenomics, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands. h.danner@science.ru.nl, pp. 785–794, Jun, 2012.
Link:
http://dx.doi.org/10.1007/s10886-012-0129-3
Root herbivores are notoriously difficult to study, as they feed hidden in the soil. However, root herbivores may be traced by analyzing specific volatile organic compounds (VOCs) that are produced by damaged roots. These VOCs not only support parasitoids in the localization of their host, but also may help scientists study belowground plant-herbivore interactions. Herbivore-induced VOCs are usually analyzed by gas-chromatography mass spectrometry (GC-MS), but with this off-line method, the gases of interest need to be preconcentrated, and destructive sampling is required to assess the level of damage to the roots. In contrast to this, proton-transfer-reaction mass spectrometry (PTR-MS) is a very sensitive on-line, non-invasive method. PTR-MS already has been successfully applied to analyze VOCs produced by aboveground (infested) plant parts. In this review, we provide a brief overview of PTR-MS and illustrate how this technology can be applied to detect specific root-herbivore induced VOCs from Brassica plants. We also specify the advantages and disadvantages of PTR-MS analyses and new technological developments to overcome their limitations.