Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 15 results
Title [ Year(Asc)]
Filters: First Letter Of Title is L  [Clear All Filters]
2017
[1824] Eichler, P., M. Müller, C. Rohmann, B. Stengel, J. Orasche, R. Zimmermann, and A. Wisthaler, "Lubricating Oil as a Major Constituent of Ship Exhaust Particles", Environmental Science {&} Technology Letters, vol. 4, pp. 54–58, jan, 2017.
Link: http://pubs.acs.org/doi/abs/10.1021/acs.estlett.6b00488
Abstract
<p>A proton-transfer-reaction time-of-flight mass spectrometer combined with the novel CHARON (&ldquo;chemical analysis of aerosol online&rdquo;) aerosol inlet was used for characterization of submicrometer particulate organic matter in ship engine exhaust. Particles were sampled from diluted and cooled exhaust of a marine test bench engine that was operated on residual heavy fuel oil (HFO) and low-sulfur distillate marine gas oil (MGO), respectively. In both fuel operation modes, exhaust particle mass spectra were dominated by polycycloalkanes in the C20-to-C39 range, which are typical main constituents of lubricating oils. Exhaust particle mass spectra were closely reproduced when the engine&rsquo;s lubricant oil was directly measured in aerosolized form. We report emission profiles of lubricant oil hydrocarbons as a function of their volatility and as a function of their carbon atom number. Total emissions of lubricant oil amounted to 183 and 74 mg kW&ndash;1 h&ndash;1 for HFO and MGO combustion, respectively. These values resemble typical oil loss rates of marine four-stroke trunk piston engines in which most of the lubricant is known to be lost through the combustion chamber and the tailpipe. We conclude that marine trunk piston engines are generally prone to high emissions of particles mainly composed of unburned lubricating oil.</p>
2016
[1821] Garg, S., B. Praphulla Chandra, V. Sinha, R. Sarda-Esteve, V. Gros, and B. Sinha, "Limitation of the Use of the Absorption Angstrom Exponent for Source Apportionment of Equivalent Black Carbon: a Case Study from the North West Indo-Gangetic Plain", Environmental Science {&} Technology, vol. 50, pp. 814–824, jan, 2016.
Link: https://www.ncbi.nlm.nih.gov/pubmed/26655249
Abstract
<p>Angstrom exponent measurements of equivalent black carbon (BCeq) have recently been introduced as a novel tool to apportion the contribution of biomass burning sources to the BCeq mass. The BCeq is the mass of ideal BC with defined optical properties that, upon deposition on the aethalometer filter tape, would cause equal optical attenuation of light to the actual PM2.5 aerosol deposited. The BCeq mass hence is identical to the mass of the total light-absorbing carbon deposited on the filter tape. Here, we use simultaneously collected data from a seven-wavelength aethalometer and a high-sensitivity proton-transfer reaction mass spectrometer installed at a suburban site in Mohali (Punjab), India, to identify a number of biomass combustion plumes. The identified types of biomass combustion include paddy- and wheat-residue burning, leaf litter, and garbage burning. Traffic plumes were selected for comparison. We find that the combustion efficiency, rather than the fuel used, determines αabs, and consequently, the αabs can be &sim;1 for flaming biomass combustion and &gt;1 for older vehicles that operate with poorly optimized engines. Thus, the absorption angstrom exponent is not representative of the fuel used and, therefore, cannot be used as a generic tracer to constrain source contributions.</p>
2013
[Fischer2013a] Fischer, L., A. Klinger, J. Herbig, K. Winkler, R. Gutmann, and A. Hansel, "The LCU: Versatile Trace Gas Calibration", 6th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, pp. 192, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
2012
[Cappellin2012b] Cappellin, L., E. Aprea, P. Granitto, R. Wehrens, C. Soukoulis, R. Viola, T. D. Märk, F. Gasperi, and F. Biasioli, "Linking GC-MS and PTR-TOF-MS fingerprints of food samples", Chemometrics and Intelligent Laboratory Systems, vol. 118, pp. 301 - 307, 2012.
Link: http://www.sciencedirect.com/science/article/pii/S0169743912001219
Abstract
Recently the first applications in food science and technology of the newly available volatile organic compound (VOC) detection technique proton transfer reaction�mass spectrometry, coupled with a time of flight mass analyzer (PTR-TOF-MS), have been published. In comparison with standard techniques such as GC-MS, PTR-TOF-MS has the remarkable advantage of being extremely fast but has the drawback that compound identification is more challenging and often not possible without further information. In order to better exploit and understand the analytical information entangled in the PTR-TOF-MS fingerprint and to link it with SPME/GC-MS analyses we employed two multivariate calibration methods, \{PLS\} and the more recent LASSO. We show that, while in some cases it is sufficient to consider a single PTR-TOF-MS peak in order to predict the intensity of a SPME/GC-MS peak, in general a multivariate approach is needed. We compare the performances of \{PLS\} and \{LASSO\} in terms of prediction capabilities and interpretability of the model coefficients and conclude that \{LASSO\} is more suitable for this problem. As case study, we compared \{GC\} and PTR-MS data for different matrices, namely olive oil and grana cheese.
2010
[Demarcke2010a] Demarcke, M., C. Amelynck, N. Schoon, F. Dhooghe, J. Rimetz-Planchon, H. Van Langenhove, and J. Dewulf, "Laboratory studies in support of the detection of biogenic unsaturated alcohols by proton transfer reaction-mass spectrometry", International Journal of Mass Spectrometry, vol. 290, no. 1: Elsevier, pp. 14–21, 2010.
Link: http://www.sciencedirect.com/science/article/pii/S1387380609003558
Abstract
The effect of the ratio of the electric field to the buffer gas number density (E/N) in the drift tube reactor of a proton transfer reaction-mass spectrometer (PTR-MS) on the product ion distributions of seven common biogenic unsaturated alcohols (2-methyl-3-buten-2-ol, 1-penten-3-ol, cis-3-hexen-1-ol, trans-2-hexen-1-ol, 1-octen-3-ol, 6-methyl-5-hepten-2-ol and linalool) has been investigated. At low E/N values, the dominant product ion is the dehydrated protonated alcohol. Increasing E/N results in more extensive fragmentation for all compounds. For cis-3-hexenol and 6-methyl-5-hepten-2-ol the contribution of the protonated molecule can be enhanced by reducing E/N with respect to commonly used PTR-MS E/N values (120–130 Td). Significant differences have been found between some of the isomeric species studied, opening a way for selective detection. The C10 alcohol linalool mainly results in product ions at m/z 137 and 81, which are also PTR-MS fingerprints of monoterpenes. This may complicate monoterpene quantification when linalool and monoterpenes are simultaneously present in sampled air. Furthermore the influence of the water vapour pressure in the PTR-MS inlet line on the product ion distributions has been determined. Some major fingerprint ions of the unsaturated alcohols were found to depend significantly on the water vapour pressure in the inlet line and this should be taken into account for accurate quantification of these species by PTR-MS.
[Taipale2010] Taipale, R., T. M. Ruuskanen, and J. Rinne, "Lag time determination in DEC measurements with PTR-MS", Atmospheric Measurement Techniques Discussions, vol. 3, no. 1: Copernicus GmbH, pp. 405–429, 2010.
Link: http://www.atmos-meas-tech-discuss.net/3/405/2010/
Abstract
The disjunct eddy covariance (DEC) method has emerged as a popular technique for micrometeorological flux measurements of volatile organic compounds (VOCs). It has usually been combined with proton transfer reaction mass spectrometry (PTR-MS), an online technique for VOC concentration measurements. However, the determination of the lag time between wind and concentration measurements has remained an important challenge. To address this conundrum, we studied the effect of different lag time methods on DEC fluxes. The analysis was based on both actual DEC measurements with PTR-MS and simulated DEC data derived from high frequency H2O measurements with an infrared gas analyzer. Conventional eddy covariance fluxes of H2O served as a reference in the DEC simulation. The individual flux measurements with PTR-MS were rather sensitive to the lag time methods, but typically this effect averaged out when the median fluxes were considered. The DEC simulation revealed that the maximum covariance method was prone to overestimation of the absolute values of fluxes. The constant lag time methods, one resting on a value calculated from the sampling flow and the sampling line dimensions and the other on a typical daytime value, had a tendency to underestimate. The visual assessment method and our new averaging approach based on running averaged covariance functions did not yield statistically significant errors and thus fared better than the habitual choice, the maximum covariance method. Given this feature and the potential for automatic flux calculation, we recommend using the averaging approach in DEC measurements with PTR-MS.
[Hennigan2010] Hennigan, C. J., A. P. Sullivan, J. L. Collett, and A. L. Robinson, "Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals", Geophysical Research Letters, vol. 37, no. 9: Wiley Online Library, 2010.
Link: http://onlinelibrary.wiley.com/doi/10.1029/2010GL043088/full
Abstract
Experiments were carried out in a smog chamber to investigate the oxidation of levoglucosan in biomass burning particles exposed to gas-phase hydroxyl radicals (OH). The experiments featured atmospherically-relevant particle and oxidant concentrations and both high and low relative humidity conditions. In every experiment, we observed levoglucosan decay in particles exposed to OH. The extent of decay ranged from ∼20% to ∼90% and was strongly correlated to the integrated OH exposure. Increased relative humidity did not enhance or impede reaction. Relative kinetics indicate that levoglucosan has an atmospheric lifetime of 0.7–2.2 days when biomass burning particles are exposed to 1 × 106 molecules cm−3 of OH (typical average summertime conditions). This implies that levoglucosan reacts with OH on a timescale similar to that of transport and deposition, which has important implications for the use of levoglucosan as a tracer for biomass burning emissions in source apportionment studies.
2009
[Kim2009] Kim, S., T. Karl, I. Herdlinger, D. Helmig, R. Rasmussen, R. Daly, and A. Guenther, "Laboratory and Field Measurements of Sesquiterpenes by PTRMS", CONFERENCE SERIES, pp. 116, 2009.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_4.pdf
[Demarcke2009] Demarcke, M., C. Amelynck, N. Schoon, F. Dhooghe, H. Van Langenhove, and J. Dewulf, "Laboratory studies in support of the detection of sesquiterpenes by proton-transfer-reaction-mass-spectrometry", International Journal of Mass Spectrometry, vol. 279, no. 2: Elsevier, pp. 156–162, 2009.
Link: http://www.sciencedirect.com/science/article/pii/S1387380608004351
Abstract
The effects of the ratio of the electric field strength to the buffer gas number density (E/N) in the drift tube of a proton transfer reaction mass spectrometer on the product ion distributions of the sesquiterpenes β-caryophyllene, α-humulene, α-cedrene and longifolene have been investigated.Chemical ionization of the sesquiterpenes resulted in important fragmentation of the nascent excited ion/molecule complex at the highest E/N values. The most important fragment ions were common to all sesquiterpenes and therefore cannot be used as fingerprints for specific isomers. The yield of the protonated molecule increased on average by a factor 1.6 by decreasing E/N from 140 to 80 Td. Taking into account the influence of E/N on the reaction time and on the reactant ion mobility, it is estimated that this decrease in E/N may lead to an overall increase in the PTR-MS detection sensitivity of sesquiterpenes (based on the ion signal at m/z 205) by a factor 3.5.Product ion distributions of α-cedrene and longifolene have also been determined at different water vapour pressures. No substantial influence of the water vapour pressure on the product ion yields was observed, which is an advantage when quantifying sesquiterpenes by PTR-MS in samples of varying relative humidity.
[1505] Bouvier-Brown, N. C., R. Holzinger, K. Palitzsch, and A. H. Goldstein, "Large emissions of sesquiterpenes and methyl chavicol quantified from branch enclosure measurements", Atmospheric Environment, vol. 43, pp. 389–401, Jan, 2009.
Link: http://dx.doi.org/10.1016/j.atmosenv.2008.08.039
Abstract
<p>Multiple field studies have suggested chemistry within a forest canopy is poorly understood due to inadequate detection and quantification of reactive biogenic emissions, such as terpenes. To measure emission rates of terpenes at Blodgett Forest, a coniferous forest in the Sierra Nevada mountains of California, we placed enclosures over branches of the dominant species at the site &ndash; Ponderosa pine, manzanita, and ceanothus &ndash; in the summer of 2005. Zero air, with ambient CO2 concentrations, flowed through the chamber system and volatile organic compound (VOC) emission measurements were made by proton transfer reaction mass spectrometry (PTR-MS), solid phase microextraction (SPME) on fibers followed by direct injection into a gas chromatograph with an ion trap mass spectrometer (GC-ITMS), and by in situ GC with a flame ionization detector (GC-FID). We show that previously undetected sesquiterpenes and methyl chavicol significantly contribute to the total reactive biogenic emission profile from this field site.</p>
[Zahn2009] Zahn, A., J. Brito, and D. Sprung, "A lightweight, high-sensitivity PTRMS for aircraft platforms", CONFERENCE SERIES, pp. 114, 2009.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_4.pdf
[Jordan2009] Jordan, C., E. Fitz, T. Hagan, B. Sive, E. Frinak, K. Haase, L. Cottrell, S. Buckley, and R. Talbot, "Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences", Atmospheric Chemistry and Physics, vol. 9, no. 14: Copernicus GmbH, pp. 4677–4697, 2009.
Link: http://www.atmos-chem-phys.net/9/4677/2009/
Abstract
A long-term, high time-resolution volatile organic compound (VOC) data set from a ground site that experiences urban, rural, and marine influences in the Northeastern United States is presented. A proton-transfer-reaction mass spectrometer (PTR-MS) was used to quantify 15 VOCs: a marine tracer dimethyl sulfide (DMS), a biomass burning tracer acetonitrile, biogenic compounds (monoterpenes, isoprene), oxygenated VOCs (OVOCs: methyl vinyl ketone (MVK) plus methacrolein (MACR), methanol, acetone, methyl ethyl ketone (MEK), acetaldehyde, and acetic acid), and aromatic compounds (benzene, toluene, C8 and C9 aromatics). Time series, overall and seasonal medians, with 10th and 90th percentiles, seasonal mean diurnal profiles, and inter-annual comparisons of mean summer and winter diurnal profiles are shown. Methanol and acetone exhibit the highest overall median mixing ratios 1.44 and 1.02 ppbv, respectively. Comparing the mean diurnal profiles of less well understood compounds (e.g., MEK) with better known compounds (e.g., isoprene, monoterpenes, and MVK + MACR) that undergo various controls on their atmospheric mixing ratios provides insight into possible sources of the lesser known compounds. The constant diurnal value of  0.7 for the toluene:benzene ratio in winter, may possibly indicate the influence of wood-based heating systems in this region. Methanol exhibits an initial early morning release in summer unlike any other OVOC (or isoprene) and a dramatic late afternoon mixing ratio increase in spring. Although several of the OVOCs appear to have biogenic sources, differences in features observed between isoprene, methanol, acetone, acetaldehyde, and MEK suggest they are produced or emitted in unique ways.
2007
[Knighton2007a] W Knighton, B., S. C. Herndon, J. H. Shorter, R. C. Miake-Lye, M. S. Zahniser, K. Akiyama, A. Shimono, K. Kitasaka, H. Shimajiri, and K. Sugihara, "Laboratory evaluation of an aldehyde scrubber system specifically for the detection of acrolein.", J Air Waste Manag Assoc, vol. 57, no. 11: MT 59717, USA. bknighton@chemistry.montana.edu, pp. 1370–1378, Nov, 2007.
Link: http://www.tandfonline.com/doi/abs/10.3155/1047-3289.57.11.1370
Abstract
We demonstrate the use of an aldehyde scrubber system to resolve isobaric aldehyde/alkene interferences in a proton transfer reaction mass spectrometer (PTR-MS) by selectively removing the aldehydes from the gas mixture without loss of quantitative information for the alkene components. The aldehyde scrubber system uses a bisulfite solution, which scrubs carbonyl compounds from the gas stream by forming water-soluble carbonyl bisulfite addition products, and has been evaluated using a synthetic mixture of acrolein and isoprene. Trapping efficiencies of acrolein exceeded 97%, whereas the transmission efficiency of isoprene was better than 92%. Quantification of the PTR-MS response to acrolein was validated through an intercomparison study that included two derivatization methods, dinitrophenylhydrazine (DNPH) and O-(4-cyano-2-ethoxybenzyl)hydroxylamine (CNET), and a spectroscopic method using a quantum cascade laser infrared absorption spectroscopy (QCL) instrument. Finally, using cigarette smoke as a complex matrix, the acrolein content was assessed using the scrubber and compared with direct QCL-based detection.
[Wehinger2007] Wehinger, A., A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl, and A. Amann, "Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas", International Journal of Mass Spectrometry, vol. 265, no. 1, pp. 49 - 59, 2007.
Link: http://www.sciencedirect.com/science/article/pii/S1387380607002382
Abstract
Background: Determination of the diagnostic usefulness of proton transfer reaction mass spectrometry (PTR-MS) for detecting primary lung cancer through analysis of volatile organic compounds (VOCs) in exhaled human breath was demonstrated in this investigation. Unlike, for example, gas-chromatographic analyses, PTR-MS can be used without time-consuming preconcentration of the gas samples.
2003
[Pollien2003b] Pollien, P., A. Jordan, W. Lindinger, and C. Yeretzian, "Liquid–air partitioning of volatile compounds in coffee: dynamic measurements using proton-transfer-reaction mass spectrometry", International Journal of Mass Spectrometry, vol. 228, no. 1: Elsevier, pp. 69–80, 2003.
Link: http://www.sciencedirect.com/science/article/pii/S1387380603001970
Abstract
Recently we introduced a dynamic approach to determine Henry’s law constants (HLCs) of volatile organic compounds (VOCs) in water, and applied it to a series organic compounds dissolved in pure water. Here, we first discuss a further development of the original approach such that it can be applied to complex liquid food systems (coffee). Second, we examine the impact of non-volatile constituents on the HLC. More specifically, we evaluate the impact of non-volatile coffee constituents on the HLC of 2-methylpropanal, 3- and 2-methylbutanal, dimethylsulfide, dimethyldisulfide and ethyl-2-methylbutyrate. Finally, we demonstrate that the concentration on the VOC in solution does not affect the HLC, over the investigated concentration range of 10−4 to 10 ppm.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.