Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 13 results
Title [ Year(Asc)]
Filters: First Letter Of Title is G  [Clear All Filters]
2014
[1611] Granato, D., A. Koot, and S. M. { van Ruth}, "Geographical provenancing of purple grape juices from different farming systems by proton transfer reaction mass spectrometry using supervised statistical techniques.", J Sci Food Agric, Nov, 2014.
Link: http://dx.doi.org/10.1002/jsfa.7001
Abstract
<p>Organic, biodynamic and conventional purple grape juices (PGJ; n = 79) produced in Brazil and Europe were characterized by volatile organic compounds (m/z 20-160) measured by proton transfer reaction mass spectrometry (PTR-MS), and classification models were built using supervised statistical techniques.k-Nearest neighbours and soft independent modelling of class analogy (SIMCA) models discriminated adequately the Brazilian from European PGJ (overall efficiency of 81% and 87%, respectively). Partial least squares discriminant analysis (PLSDA) classified 100% European and 96% Brazilian PGJ. Similarly, when samples were grouped as either conventional or organic/biodynamic, the PLSDA model classified 81% conventional and 83% organic/biodynamic juices. Intraregional PLSDA models (juices produced in the same region&nbsp;-&nbsp;either Europe or Brazil) were developed and were deemed accurate in discriminating Brazilian organic from conventional PGJ (81% efficiency), as well as European conventional from organic/biodynamic PGJ (94% efficiency).PGJ from Brazil and Europe, as well as conventional and organic/biodynamic PGJ, were distinguished with high efficiency, but no statistical model was able to differentiate organic and biodynamic grape juices. These data support the hypothesis that no clear distinction between organic and biodynamic grape juices can be made with respect to volatile organic compounds. &copy; 2014 Society of Chemical Industry.</p>
2012
[Jardine2012] Jardine, K.., G.. A. Barron-Gafford, J.. P. Norman, L.. Abrell, R.. K. Monson, K.. T. Meyers, M.. Pavao-Zuckerman, K.. Dontsova, E.. Kleist, C.. Werner, et al., "Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions.", Photosynth Res, vol. 113, no. 1-3: The University of Arizona-Biosphere 2, P.O. Box 8746, Tucson, AZ 85738, USA. jardine@email.arizona.edu, pp. 321–333, Sep, 2012.
Link: http://dx.doi.org/10.1007/s11120-012-9746-5
Abstract
Green leaf volatiles (GLVs) are a diverse group of fatty acid-derived compounds emitted by all plants and are involved in a wide variety of developmental and stress-related biological functions. Recently, GLV emission bursts from leaves were reported following light-dark transitions and hypothesized to be related to the stress response while acetaldehyde bursts were hypothesized to be due to the 'pyruvate overflow' mechanism. In this study, branch emissions of GLVs and a group of oxygenated metabolites (acetaldehyde, ethanol, acetic acid, and acetone) derived from the pyruvate dehydrogenase (PDH) bypass pathway were quantified from mesquite plants following light-dark transitions using a coupled GC-MS, PTR-MS, and photosynthesis system. Within the first minute after darkening following a light period, large emission bursts of both C(5) and C(6) GLVs dominated by (Z)-3-hexen-1-yl acetate together with the PDH bypass metabolites are reported for the first time. We found that branches exposed to CO(2)-free air lacked significant GLV and PDH bypass bursts while O(2)-free atmospheres eliminated the GLV burst but stimulated the PDH bypass burst. A positive relationship was observed between photosynthetic activity prior to darkening and the magnitude of the GLV and PDH bursts. Photosynthesis under (13)CO(2) resulted in bursts with extensive labeling of acetaldehyde, ethanol, and the acetate but not the C(6)-alcohol moiety of (Z)-3-hexen-1-yl acetate. Our observations are consistent with (1) the "pyruvate overflow" mechanism with a fast turnover time (<1 h) as part of the PDH bypass pathway, which may contribute to the acetyl-CoA used for the acetate moiety of (Z)-3-hexen-1-yl acetate, and (2) a pool of fatty acids with a slow turnover time (>3 h) responsible for the C(6) alcohol moiety of (Z)-3-hexen-1-yl acetate via the 13-lipoxygenase pathway. We conclude that our non-invasive method may provide a new valuable in vivo tool for studies of acetyl-CoA and fatty acid metabolism in plants at a variety of spatial scales.
2011
[Beck2011] Beck, M.., R.. Winterhalter, F.. Herrmann, and G.. K. Moortgat, "The gas-phase ozonolysis of ?-humulene.", Phys Chem Chem Phys, vol. 13, no. 23: Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany. geert.moortgat@mpic.de, pp. 10970–11001, Jun, 2011.
Link: http://pubs.rsc.org/en/Content/ArticleLanding/2011/CP/c0cp02379e
Abstract
?-Humulene contains three double bonds (DB), and after ozonolysis of the first DB the first-generation products are still reactive towards O(3) and produce second- and third-generation products. The primary aim of this study consisted of identifying the products of the three generations, focusing on the carboxylic acids, which are known to have a high aerosol formation potential. The experiments were performed in a 570 litre spherical glass reactor at 295 K and 730 Torr. Initial mixing ratios were 260-2090 ppb for O(3) and 250-600 ppb for ?-humulene in synthetic air. Reactants and gas-phase products were measured by in situ FTIR spectroscopy. Particulate products were sampled on Teflon filters, extracted with methanol and analyzed by LC-MS/MS-TOF. Using cyclohexane (10-100 ppm) as an OH-radical scavenger and by monitoring the yield of cyclohexanone by PTR-MS, an OH-yield of (10.5 ± 0.7)% was determined for the ozonolysis of the first DB, and (12.9 ± 0.7)% of the first-generation products. The rate constant of the reaction of O(3) with ?-humulene is known as k(0) = 1.17 ± 10(-14) cm(3) molecule(-1) s(-1) [Y. Shu and R. Atkinson, Int. J. Chem. Kinet., 1994, 26, 1193-1205]. The reaction rate constants of O(3) with the first-generation products and the second-generation products were, respectively, determined as k(1) = (3.6 ± 0.9) x 10(-16) and k(2) = (3.0 ± 0.7) x 10(-17) cm(3) molecule(-1) s(-1) by Facsimile-simulation of the observed ozone decay by FTIR. A total of 37 compounds in the aerosol phase and 5 products in the gas phase were tentatively identified: 25 compounds of the first-generation products contained C13-C15 species, 9 compounds of the second-generation products contained C8-C11 species, whereas 8 compounds of the third-generation products contained C4-C6 species. The products of all three generations consisted of a variety of dicarboxylic-, hydroxy-oxocarboxylic- and oxo-carboxylic acids. The formation mechanisms of some of the products are discussed. The residual FTIR spectra indicate the formation of secondary ozonides (SOZ) in the gas phase, which are formed by the intramolecular reaction of the Criegee moiety with the carbonyl endgroup. These SOZ revealed to be stable over several hours and its formation was shown not to be affected by the addition of Criegee-radical scavengers such as HCOOH or H(2)O. This suggests that in the ozonolysis of ?-humulene at atmospheric pressures the POZ will decompose rapidly, and that a large fraction of the formed exited Criegee Intermediate will be stabilized to form stable SOZ, while the formation of OH-radicals via the hydroperoxide channel will be a minor process.
[1491] Hewitt, C.. N., K.. Ashworth, A.. Boynard, A.. Guenther, B.. Langford, A.. R. MacKenzie, P.. K. Misztal, E.. Nemitz, S.. M. Owen, M.. Possell, et al., "Ground-level ozone influenced by circadian control of isoprene emissions", Nature Geoscience, vol. 4, pp. 671–674, 2011.
Abstract
<p>The volatile organic compound isoprene is produced by many plant species, and provides protection against biotic and abiotic stresses1. Globally, isoprene emissions from plants are estimated to far exceed anthropogenic emissions of volatile organic compounds2. Once in the atmosphere, isoprene reacts rapidly with hydroxyl radicals3 to form peroxy radicals, which can react with nitrogen oxides to form ground-level ozone4. Here, we use canopy-scale measurements of isoprene fluxes from two tropical ecosystems in Malaysia&mdash;a rainforest and an oil palm plantation&mdash;and three models of atmospheric chemistry to explore the effects of isoprene fluxes on ground-level ozone. We show that isoprene emissions in these ecosystems are under circadian control on the canopy scale, particularly in the oil palm plantation. As a result, these ecosystems emit less isoprene than present emissions models predict. Using local-, regional- and global-scale models of atmospheric chemistry and transport, we show that accounting for circadian control of isoprene emissions brings model predictions of ground-level ozone into better agreement with measurements, especially in isoprene-sensitive regions of the world.</p>
2009
[Buhr2009] Buhr, K., K. Eisgruber, J. Kiefl, and P. Schieberle, "Garlic breath sampling and monitoring by Proton Transfer Reaction-Mass Spectrometry", CONFERENCE SERIES, pp. 203, 2009.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_4.pdf
[Winterhalter2009] Winterhalter, R., F. Herrmann, B. Kanawati, T. Lam Nguyen, J. Peeters, L. Vereecken, and G. K. Moortgat, "The gas-phase ozonolysis of beta-caryophyllene (C(15)H(24)). Part I: an experimental study.", Phys Chem Chem Phys, vol. 11, no. 21: mistry Department, P.O. Box 3060, D-55020, Mainz, Germany. winterha@mpch-mainz.mpg.de, pp. 4152–4172, Jun, 2009.
Link: http://pubs.rsc.org/en/Content/ArticleLanding/2009/CP/b817824k#!divAbstract
Abstract
The gas phase reaction of ozone with beta-caryophyllene was investigated in a static glass reactor at 750 Torr and 296 K under various experimental conditions. The reactants and gas phase products were monitored by FTIR-spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS). Aerosol formation was monitored with a scanning mobility particle sizer (SMPS) and particulate products analysed by liquid chromatography/mass spectrometry (HPLC-MS). The different reactivity of the two double bonds in beta-caryophyllene was probed by experiments with different ratios of reactants. An average rate coefficient at 295 K for the first-generation products was determined as 1.1 x 10(-16) cm(3) molecule(-1) s(-1). Using cyclohexane as scavenger, an OH-radical yield of (10.4 +/- 2.3)% was determined for the ozonolysis of the more reactive internal double bond, whereas the average OH-radical yield for the ozonolysis of the first-generation products was found to be (16.4 +/- 3.6)%. Measured gas phase products are CO, CO(2) and HCHO with average yields of (2.0 +/- 1.8)%, (3.8 +/- 2.8)% and (7.7 +/- 4.0)%, respectively for the more reactive internal double bond and (5.5 +/- 4.8)%, (8.2 +/- 2.8)% and (60 +/- 6)%, respectively from ozonolysis of the less reactive double bond of the first-generation products. The residual FTIR spectra indicate the formation of an internal secondary ozonide of beta-caryophyllene. From experiments using HCOOH as a Criegee intermediate (CI) scavenger, it was concluded that at least 60% of the formed CI are collisionally stabilized. The aerosol yield in the ozonolysis of beta-caryophyllene was estimated from the measured particle size distributions. In the absence of a CI scavenger the yield ranged between 5 and 24%, depending on the aerosol mass. The yield increases with addition of water vapour or with higher concentrations of formic acid. In the presence of HCHO, lower aerosol yields were observed. This suggests that HCOOH adds to a Criegee intermediate to form a low-volatility compound responsible for aerosol formation. The underlying reaction mechanisms are discussed and compared with the results from the accompanying theoretical paper.
2008
[Araghipour2008] Araghipour, N., J. Colineau, A. Koot, W. Akkermans, J. Manuel Mor Rojas, J. Beauchamp, A. Wisthaler, T. D. Märk, G. Downey, C. Guillou, et al., "Geographical origin classification of olive oils by PTR-MS", Food Chemistry, vol. 108, no. 1: Elsevier, pp. 374–383, 2008.
Link: http://www.sciencedirect.com/science/article/pii/S0308814607010965
Abstract
The volatile compositions of 192 olive oil samples from five different European countries were investigated by PTR-MS sample headspace analysis. The mass spectra of all samples showed many masses with high abundances, indicating the complex VOC composition of olive oil. Three different PLS-DA models were fitted to the data to classify samples into ‘country’, ‘region’ and ‘district’ of origin, respectively. Correct classification rates were assessed by cross-validation. The first fitted model produced an 86% success rate in classifying the samples into their country of origin. The second model, which was fitted to the Italian oils only, also demonstrated satisfactory results, with 74% of samples successfully classified into region of origin. The third model, classifying the Italian samples into district of origin, yielded a success rate of only 52%. This lower success rate might be due to either the small class set, or to genuine similarities between olive oil VOC compositions on this tight scale.
2006
[1500] Lee, A., A. H. Goldstein, M. D. Keywood, S. Gao, V. Varutbangkul, R. Bahreini, N. L. Ng, R. C. Flagan, and J. H. Seinfeld, "Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes", Journal of Geophysical Research, vol. 111, 2006.
Link: http://nature.berkeley.edu/ahg/pubs/gas.pdf
Abstract
<p>The ozonolyses of six monoterpenes (α-pinene, β-pinene, 3-carene, terpinolene, α-terpinene, and myrcene), two sesquiterpenes (α-humulene and β-caryophyllene), and two oxygenated terpenes (methyl chavicol and linalool) were conducted individually in Teflon chambers to examine the gas-phase oxidation product and secondary organic aerosol (SOA) yields from these reactions. Particle size distribution and number concentration were monitored and allowed for the calculation of the SOA yield from each experiment, which ranged from 1 to 54%. A proton transfer reaction mass spectrometer (PTR-MS) was used to monitor the evolution of gas-phase products, identified by their mass to charge ratio (m/z). Several gas-phase oxidation products, formaldehyde, acetaldehyde, formic acid, acetone, acetic acid, and nopinone, were identified and calibrated. Aerosol yields, and the yields of these identified and calibrated oxidation products, as well as many higher m/z oxidation products observed with the PTR-MS, varied significantly between the different parent terpene compounds. The sum of measured oxidation products in the gas and particle phase ranged from 33 to 77% of the carbon in the reacted terpenes, suggesting there are still unmeasured products from these reactions. The observations of the higher molecular weight oxidation product ions provide evidence of previously unreported compounds and their temporal evolution in the smog chamber from multistep oxidation processes. Many of the observed ions, including m/z 111 and 113, have also been observed in ambient air above a Ponderosa pine forest canopy, and our results confirm they are consistent with products from terpene + O3 reactions. Many of these products are stable on the timescale of our experiments and can therefore be monitored in field campaigns as evidence for ozone oxidative chemistry.</p>
[1502] Lee, A., A. H. Goldstein, J. H. Kroll, N. L. Ng, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, "Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes", Journal of Geophysical Research, vol. 111, 2006.
Link: http://dx.doi.org/10.1029/2006JD007050
Abstract
<p>The photooxidation of isoprene, eight monoterpenes, three oxygenated monoterpenes, and four sesquiterpenes were conducted individually at the Caltech Indoor Chamber Facility under atmospherically relevant HC:NOx ratios to monitor the time evolution and yields of SOA and gas-phase oxidation products using PTR-MS. Several oxidation products were calibrated in the PTR-MS, including formaldehyde, acetaldehyde, formic acid, acetone, acetic acid, nopinone, methacrolein + methyl vinyl ketone; other oxidation products were inferred from known fragmentation patterns, such as pinonaldehyde; and other products were identified according to their mass to charge (m/z) ratio. Numerous unidentified products were formed, and the evolution of first- and second-generation products was clearly observed. SOA yields from the different terpenes ranged from 1 to 68%, and the total gas- plus particle-phase products accounted for &sim;50&ndash;100% of the reacted carbon. The carbon mass balance was poorest for the sesquiterpenes, suggesting that the observed products were underestimated or that additional products were formed but not detected by PTR-MS. Several second-generation products from isoprene photooxidation, including m/z 113, and ions corresponding to glycolaldehyde, hydroxyacetone, methylglyoxal, and hydroxycarbonyls, were detected. The detailed time series and relative yields of identified and unidentified products aid in elucidating reaction pathways and structures for the unidentified products. Many of the unidentified products from these experiments were also observed within and above the canopy of a Ponderosa pine plantation, confirming that many products of terpene oxidation can be detected in ambient air using PTR-MS, and are indicative of concurrent SOA formation.</p>
2005
[Jacob2005] Jacob, D. J., B. D. Field, Q. Li, D. R. Blake, J. de Gouw, C. Warneke, A. Hansel, A. Wisthaler, H. B. Singh, and A. Guenther, "Global budget of methanol: Constraints from atmospheric observations", Journal of Geophysical Research: Atmospheres (1984–2012), vol. 110, no. D8: Wiley Online Library, 2005.
Link: http://onlinelibrary.wiley.com/doi/10.1029/2004JD005172/full
Abstract
We use a global three-dimensional model simulation of atmospheric methanol to examine the consistency between observed atmospheric concentrations and current understanding of sources and sinks. Global sources in the model include 128 Tg yr−1 from plant growth, 38 Tg yr−1 from atmospheric reactions of CH3O2 with itself and other organic peroxy radicals, 23 Tg yr−1 from plant decay, 13 Tg yr−1 from biomass burning and biofuels, and 4 Tg yr−1 from vehicles and industry. The plant growth source is a factor of 3 higher for young than from mature leaves. The atmospheric lifetime of methanol in the model is 7 days; gas-phase oxidation by OH accounts for 63% of the global sink, dry deposition to land 26%, wet deposition 6%, uptake by the ocean 5%, and aqueous-phase oxidation in clouds less than 1%. The resulting simulation of atmospheric concentrations is generally unbiased in the Northern Hemisphere and reproduces the observed correlations of methanol with acetone, HCN, and CO in Asian outflow. Accounting for decreasing emission from leaves as they age is necessary to reproduce the observed seasonal variation of methanol concentrations at northern midlatitudes. The main model discrepancy is over the South Pacific, where simulated concentrations are a factor of 2 too low. Atmospheric production from the CH3O2 self-reaction is the dominant model source in this region. A factor of 2 increase in this source (to 50–100 Tg yr−1) would largely correct the discrepancy and appears consistent with independent constraints on CH3O2 concentrations. Our resulting best estimate of the global source of methanol is 240 Tg yr−1. More observations of methanol concentrations and fluxes are needed over tropical continents. Better knowledge is needed of CH3O2 concentrations in the remote troposphere and of the underlying organic chemistry.
2003
[Boscaini2003] Boscaini, E., S. { van Ruth}, F. Biasioli, F. Gasperi, and T. D. Maerk, "Gas chromatography-olfactometry (GC-O) and proton transfer reaction-mass spectrometry (PTR-MS) analysis of the flavor profile of grana padano, parmigiano reggiano, and grana trentino cheeses.", J Agric Food Chem, vol. 51, no. 7: Institut fuer Ionenphysik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria., pp. 1782–1790, Mar, 2003.
Link: http://dx.doi.org/10.1021/jf020922g
Abstract
Gas chromatography-olfactometry (GC-O) and proton transfer reaction-mass spectrometry (PTR-MS) techniques were used to deduce the profile of odor-active and volatile compounds of three grana cheeses: Grana Padano (GP), Parmigiano Reggiano (PR), and Grana Trentino (GT). Samples for GC-O analysis were prepared by dynamic headspace extraction, while a direct analysis of the headspace formed over cheese was performed by PTR-MS. The major contributors to the odor profile were ethyl butanoate, 2-heptanone, and ethyl hexanoate, with fruity notes. A high concentration of mass 45, tentatively identified as acetaldehyde, was found by PTR-MS analysis. Low odor threshold compounds, e.g., methional and 1-octen-3-one, which contributed to the odor profile but were not detected by FID, were detected by PTR-MS. Principal component analysis on both GC-O and PTR-MS data separated the three cheese samples well and showed specific compounds related to each sample.
[Salisbury2003] Salisbury, G., J. Williams, R. Holzinger, V. Gros, N. Mihalopoulos, M. Vrekoussis, R. Sarda-Esteve, H. Berresheim, R. von Kuhlmann, M. Lawrence, et al., "Ground-based PTR-MS measurements of reactive organic compounds during the MINOS campaign in Crete, July–August 2001", Atmospheric Chemistry and Physics, vol. 3, no. 4: Copernicus GmbH, pp. 925–940, 2003.
Link: http://www.atmos-chem-phys.net/3/925/2003/acp-3-925-2003.pdf
Abstract
This study presents measurements of acetonitrile, benzene, toluene, methanol and acetone made using the proton-transfer-reaction mass spectrometry (PTR-MS) technique at the Finokalia ground station in Crete during the Mediterranean INtensive Oxidant Study (MINOS) in July-August 2001. Three periods during the campaign with broadly consistent back trajectories are examined in detail. In the first, air was advected from Eastern Europe without significant biomass burning influence (mean acetonitrile mixing ratio 154 pmol/mol). In the second period, the sampled air masses originated in Western Europe, and were advected approximately east-south-east, before turning south-west over the Black Sea and north-western Turkey. The third well-defined period included air masses advected from Eastern Europe passing east and south of/over the Sea of Azov, and showed significant influence by biomass burning (mean acetonitrile mixing ratio 436 pmol/mol), confirmed by satellite pictures. The mean toluene:benzene ratios observed in the three campaign periods described were 0.35, 0.37 and 0.22, respectively; the use of this quantity to determine air mass age is discussed. Methanol and acetone were generally well-correlated both with each other and with carbon monoxide throughout the campaign. Comparison of the acetone and methanol measurements with the MATCH-MPIC model showed that the model underestimated both species by a factor of 4, on average. The correlations between acetone, methanol and CO implied that the relatively high levels of methanol observed during MINOS were largely due to direct biogenic emissions, and also that biogenic sources of acetone were highly significant during MINOS ( 35%). This in turn suggests that the model deficit in both species may be due, at least in part, to missing biogenic emissions.
1995
[Guenther1995] Guenther, A., N. C Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, WA. McKay, et al., "A global model of natural volatile organic compound emissions", Journal of Geophysical research, vol. 100, no. D5: American Geophysical Union, pp. 8873–8892, 1995.
Link: http://www.agu.org/pubs/crossref/1995/94JD02950.shtml
Abstract
Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly resolved spatial grid (0.5°×0.5° latitude/longitude) and generates hourly average emission estimates. Chemical species are grouped into four categories: isoprene, monoterpenes, other reactive VOC (ORVOC), and other VOC (OVOC). NVOC emissions from oceans are estimated as a function of geophysical variables from a general circulation model and ocean color satellite data. Emissions from plant foliage are estimated from ecosystem specific biomass and emission factors and algorithms describing light and temperature dependence of NVOC emissions. Foliar density estimates are based on climatic variables and satellite data. Temporal variations in the model are driven by monthly estimates of biomass and temperature and hourly light estimates. The annual global VOC flux is estimated to be 1150 Tg C, composed of 44% isoprene, 11% monoterpenes, 22.5% other reactive VOC, and 22.5% other VOC. Large uncertainties exist for each of these estimates and particularly for compounds other than isoprene and monoterpenes. Tropical woodlands (rain forest, seasonal, drought-deciduous, and savanna) contribute about half of all global natural VOC emissions. Croplands, shrublands and other woodlands contribute 10–20% apiece. Isoprene emissions calculated for temperate regions are as much as a factor of 5 higher than previous estimates.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.