Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 57 results
Title [ Year(Asc)]
Filters: First Letter Of Title is D  [Clear All Filters]
2017
[1833] Müller, M., P. Eichler, B. D'Anna, W. Tan, and A. Wisthaler, "Direct Sampling and Analysis of Atmospheric Particulate Organic Matter by Proton-Transfer-Reaction Mass Spectrometry", Analytical Chemistry, sep, 2017.
Abstract
<p>We report on a new method for analyzing atmospheric submicrometer particulate organic matter which combines direct particle sampling and volatilization with online chemical ionization mass spectrometric analysis. Technically, the method relies on the combined use of a CHARON (&ldquo;Chemical Analysis of Aerosol Online&rdquo;) particle inlet and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS). Laboratory studies on target analytes showed that the ionization conditions in the PTR-ToF-MS lead to extensive fragmentation of levoglucosan and cis-pinonic acid, while protonated oleic acid and 5α-cholestane molecules remain intact. Potential problems and biases in quantitative and qualitative analyses are discussed. Side-by-side atmospheric comparison measurements of total particulate organic mass and levoglucosan with an aerosol mass spectrometer (AMS) were in good agreement. Complex and clearly distinct organic mass spectra were obtained from atmospheric measurements in three European cities (Lyon, Valencia, Innsbruck). Data visualization in reduced-parameter frameworks (e.g., oxidation state of carbon vs carbon number) revealed that the CHARON-PTR-ToF-MS technique adds significant analytical capabilities for characterizing particulate organic carbon in the Earth&rsquo;s atmosphere. Positive matrix factorization (PMF) was used for apportioning sources of atmospheric particles in late fall in Innsbruck. The m/z signatures of known source marker compounds (levoglucosan and resin acids, polycyclic aromatic hydrocarbons, nicotine) in the mass spectra were used to assign PMF factors to biomass burning, traffic, and smoking emission sources.</p>
2016
[1681] Pallozzi, E., G. Guidolotti, P. Ciccioli, F. Brilli, S. Feil, and C. Calfapietra, "Does the novel fast-GC coupled with PTR-TOF-MS allow a significant advancement in detecting VOC emissions from plants?", Agricultural and Forest Meteorology, vol. 216, pp. 232–240, Jan, 2016.
Link: http://dx.doi.org/10.1016/j.agrformet.2015.10.016
Abstract
<p>Most plants produce and emit a wide blend of biogenic volatile organic compounds (BVOCs). Among them, many isoprenoids exhibit a high atmospheric reactivity toward OH radicals and ozone. In the last few years, Proton Transfer Reaction&ndash;Mass Spectrometry (PTR&ndash;MS) has been widely used in both field and laboratory determination of BVOCs, complementing the traditional methods using gas chromatography&ndash;mass spectrometry (GC&ndash;MS) for their identification in air and emission sources. This technical note reports a number of experiments carried out with a PTR- (Time-of-Flight) TOF-MS equipped with a prototype fast-GC system, allowing a fast separation of those isobaric isoprenoid compounds that cannot be identified by a direct PTR-TOF-MS analysis. The potential of this fast-GC system to adequately complement the information provided by PTR-TOF-MS was investigated by using the BVOC emissions of Quercus ilex and Eucalyptus camaldulensis as reliable testing systems, due to the different blend of isoprenoid compounds emitted and the different dependence of their emission from environmental parameters. While the oak species is a strong monoterpene emitter, the eucalyptus used is one of the few plant species emitting both isoprene and monoterpenes. The performances provided by the type of fast-GC used in the new PTR-TOF-MS instrument were also compared with those afforded by conventional GC&ndash;MS methods. The results obtained in this investigation showed that this new instrument is indeed a quick and handy tool to determine the contribution of isoprene and eucalyptol to m/z 69.070 and monoterpenes and (Z)-3-hexenal to m/z 81.070, integrating well the on-line information provided by PTR-TOF-MS. However, some limitations emerged in the instrument as compared to traditional GC&ndash;MS, which can only be solved by implementing the injection and separation processes.</p>
2015
[1635] Kus, P. Marek, and S. van Ruth, "Discrimination of Polish unifloral honeys using overall PTR-{MS} and HPLC fingerprints combined with chemometrics", LWT - Food Science and Technology, vol. 62, pp. 69–75, Jun, 2015.
Link: http://dx.doi.org/10.1016/j.lwt.2014.12.060
Abstract
<p>A total of 62 honey samples of six floral origins (rapeseed, lime, heather, cornflower, buckwheat and black locust) were analysed by means of proton transfer reaction mass spectrometry (PTR-MS) and HPLCDAD. The data were evaluated by principal component analysis and k-nearest neighbours classification in order to examine consistent differences in analytical fingerprints between various honeys allowing their discrimination. The study revealed, that both techniques were able to distinguish the floral origins, however the HPLC shows advantage over PTR-MS providing substantially better differentiation of all analysed honey types. Especially HPLC fingerprints recorded at 210 nm were most suitable for discrimination of botanical origin with the use of chemometric analysis. The obtained classification rates were: 100%, 93%, 100%, 83%, 100%, 100% (HPLC) and 69%, 67%, 78%, 67%, 100%, 88% (PTR-MS) for rapeseed, lime, heather, cornflower, buckwheat and black locust, respectively. Even if performance of PTR-MS in general was lower than HPLC, it might be useful for fast on-line screening of buckwheat honey.</p>
2013
[Juerschik2013] Juerschik, S., M. Lanza, P. Sulzer, B. Agarwal, E. Hartungen, A. Edtbauer, S. Feil, A. Jordan, G. Hanel, CA. Mayhew, et al., "Designer Drugs and Trace Explosives Detection with the Help of Very Recent Advancements in Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)", CONFERENCE SERIES, pp. 182, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Sulzer2013] Sulzer, P., T. Kassebacher, S. Juerschik, M. Lanza, E. Hartungen, A. Jordan, A. Edtbauer, S. Feil, G. Hanel, J1. L. S Maerk, et al., "Detection of Toxic Industrial Compounds (TIC) with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for a real-life monitoring scenario", CONFERENCE SERIES, pp. 196, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Wisthaler2013] Wisthaler, A., JH. Crawford, S. Haidacher, G. Hanel, E. Hartungen, A. Jordan, L. Märk, T. Mikoviny, M. Müller, P. Mutschlechner, et al., "Development of a compact PTR-ToF-MS for Suborbital Research on the Earth's Atmospheric Composition", CONFERENCE SERIES, pp. 96, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf#page=97
[Oezdestan2013] Özdestan, Ö., S. M. van Ruth, M. Alewijn, A. Koot, A. Romano, L. Cappellin, and F. Biasioli, "Differentiation of specialty coffees by proton transfer reaction-mass spectrometry", Food Research International: Elsevier, 2013.
Link: http://www.sciencedirect.com/science/article/pii/S0963996913003025
Abstract
In the coffee sector a diversity of certifications is available, with the most well-known being organic and fair trade. Intrinsic markers of products may help to assure the authenticity of food products and complement administrative controls. In the present study 110 market coffees with special production traits were characterized by high sensitivity proton transfer reaction mass spectrometry (HS PTR-MS) and volatiles were tentatively identified by PTR-time of flight MS. Espresso coffees, Kopi Luwak coffee and organic coffees could be distinguished by their profiles of volatile compounds with the help of chemometrics. A PLS-DA classification model was estimated to classify the organic and regular coffees by their HS PTR-MS mass spectra. Cross validation showed correct prediction of 42 out of the 43 (98%) organic coffee samples and 63 out of the 67 (95%) regular coffee samples. Therefore, the presented strategy is a promising approach to rapid organic coffee authentication.
[Ciesa2013] Ciesa, F., J. Dalla Via, A. Wisthaler, A. Zanella, W. Guerra, T. Mikoviny, T. D. Märk, and M. Oberhuber, "Discrimination of four different postharvest treatments of ‘Red Delicious’ apples based on their volatile organic compound (VOC) emissions during shelf-life measured by proton transfer reaction mass spectrometry (PTR-MS)", Postharvest Biology and Technology, vol. 86, pp. 329 - 336, 2013.
Link: http://www.sciencedirect.com/science/article/pii/S0925521413002032
Abstract
Abstract Storage methods extend the postharvest life of apples from weeks to up to one year; however, these methods also alter the production of volatile organic compounds (VOCs), which amongst others, are important for aroma attributes. While the impact of storage on particular aroma components has been established, high throughput methods for determining the storage history during shelf-life are elusive. Here we show the potential of proton transfer reaction-mass spectrometry (PTR-MS), an MS-based metabolic fingerprinting technique, for characterizing fruit in the postharvest chain. The \{VOC\} fingerprint of apples (Malus&#xa0;×&#xa0;domestica Borkh. ‘Red Delicious’) was analyzed by PTR-MS during four weeks of shelf-life ripening after storage under four different storage conditions: \{ULO\} (ultra-low oxygen), DCA-CF (dynamic controlled atmosphere monitored by chlorophyll fluorescence), \{RLOS\} (repeated low oxygen stress) and 1-MCP (1-methylcyclopropene) in ULO. \{PTR\} fingerprint mass spectra of the apple headspace, obtained in short time without sample preparation or preconcentration, were sufficient to discriminate the four storage conditions during shelf-life. Moreover, we were able to monitor the changes in quality-critical \{VOC\} classes, including esters and terpenes, during shelf-life and observe the differential impact of the storage history on these VOCs. This work emphasizes the potential of PTR-MS as a valuable addition to targeted GC–MS-based approaches in postharvest research.
[Lanza2013] Lanza, M., J. W. Acton, S. Jürschik, P. Sulzer, K. Breiev, A. Jordan, E. Hartungen, G. Hanel, L. Märk, C. A. Mayhew, et al., "Distinguishing two isomeric mephedrone substitutes with selective reagent ionisation mass spectrometry (SRI-MS)", Journal of Mass Spectrometry, vol. 48, no. 9, pp. 1015–1018, 2013.
Link: http://dx.doi.org/10.1002/jms.3253
Abstract
The isomers 4-methylethcathinone and N-ethylbuphedrone are substitutes for the recently banned drug mephedrone. We find that with conventional proton transfer reaction mass spectrometry (PTR-MS), it is not possible to distinguish between these two isomers, because essentially for both substances, only the protonated molecules are observed at a mass-to-charge ratio of 192 (C12H18NO+). However, when utilising an advanced PTR-MS instrument that allows us to switch the reagent ions (selective reagent ionisation) from H3O+ (which is commonly used in PTR-MS) to NO+, O2+ and Kr+, characteristic product (fragment) ions are detected: C4H10N+ (72 Da) for 4-methylethcathinone and C5H12N+ (86 Da) for N-ethylbuphedrone; thus, selective reagent ionisation MS proves to be a powerful tool for fast detection and identification of these compounds. Copyright © 2013 John Wiley & Sons, Ltd.
2012
[Miekisch2012] Miekisch, W., J. Herbig, and J. K. Schubert, "Data interpretation in breath biomarker research: pitfalls and directions", Journal of Breath Research, vol. 6, no. 3, pp. 036007, 2012.
Link: http://www.ncbi.nlm.nih.gov/pubmed/22854185
[Bamberger2012] Bamberger, I., L. Hoertnagl, T. Ruuskanen, R. Schnitzhofer, M. Müller, M. Graus, T. Karl, G. Wohlfahrt, and A. Hansel, "Deposition of terpenes to vegetation-a paradigm shift towards bidirectional VOC exchange?", EGU General Assembly Conference Abstracts, vol. 14, pp. 7949, 2012.
Link: http://adsabs.harvard.edu/abs/2012EGUGA..14.7949B
Abstract
Biogenic volatile organic compounds (BVOCs) are important precursors for secondary organic aerosol (SOA) formation (Hallquist et al., 2009). In addition reactive BVOCs play a crucial role in local tropospheric ozone production (Atkinson, 2000). According to the present scientific understanding vegetation is recognized as a major VOC emission source rather than a deposition sink. Our recent observations however demonstrate that an uptake of terpene compounds to mountain grassland can be significant - at least under certain atmospheric conditions. After a severe hailstorm volume mixing ratios (VMR) of locally emitted terpene compounds originating from conifers located at the mountain slopes were strongly enhanced, even during daytime hours. Weeks after the hailstorm our PTR-MS and PTR-time-of-flight (PTR-TOF) instruments still measured deposition fluxes of monoterpenes (m/z 137.133), sesquiterpenes (m/z 205.195), and oxygenated terpenes (m/z 153.128) to the grassland. The total amount of terpenoids (on a carbon basis) deposited to the grassland during the weeks after the hailstorm is comparable to the total methanol emission of the entire growing season (Bamberger et al., 2011). These findings pose the question whether the terminology should be adjusted from VOC emission to VOC exchange.
[Sulzer2012a] Sulzer, P., S. Juerschik, B. Agarwal, T. Kassebacher, E. Hartungen, A. Edtbauer, F. Petersson, J. Warmer, G. Holl, D. Perry, et al., "Designer Drugs and Trace Explosives Detection with the Help of Very Recent Advancements in Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)", Future Security: Springer, pp. 366–375, 2012.
Link: http://link.springer.com/chapter/10.1007/978-3-642-33161-9_55
Abstract
At the "Future Security 2011" we presented an overview of our studies on the "Detection and Identification of Illicit and Hazardous Substances with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)" including first results on explosives, chemical warfare agents and illicit and prescribed drugs detection. Since then we have considerably extended these preliminary studies to the detection of defined traces of some of the most common explosives, namely TNT, PETN, TATP, and DATP deposited into aluminum foam bodies, and to the detection of a number of novel and widely unknown designer drugs: ethylphenidate, 4-fluoroamphetamine and dimethocaine. Moreover, we have dramatically improved our time-of-flight based PTR-MS instruments by substantially increasing their sensitivity and hence lowering the detection limit, making them even more suitable and applicable to threat agents with extremely low vapour pressures. Data from measurements on certified gas standards are presented in order to underline these statements. The data demonstrate that, in comparison to the first generation instruments, a gain of one order of magnitude in terms of sensitivity and detection limit has been obtained.
[Schuhfried2012] Schuhfried, E., E. Aprea, L. Cappellin, C. Soukoulis, R. Viola, T. D. Maerk, F. Gasperi, and F. Biasioli, "Desorption kinetics with PTR-MS: Isothermal differential desorption kinetics from a heterogeneous inlet surface at ambient pressure and a new concept for compound identification", International journal of mass spectrometry, vol. -: Elsevier, pp. -, 2012.
Link: http://www.sciencedirect.com/science/article/pii/S1387380612000292
Abstract
Proton transfer reaction-mass spectrometry (PTR-MS) is a soft ionization mass spectrometric technique for monitoring volatile organic compounds (VOCs) with a very low limit of detection (LOD) (parts per trillion by volume) and excellent time resolution (split seconds). This makes PTR-MS a particularly interesting instrument for investigating surface desorption kinetics of volatile organic compounds (VOCs) under realistic conditions, i.e., at ambient pressure from a heterogeneous surface. Here, we report on the investigation of heterogeneous inlet surface kinetics with PTR-MS and based thereon, develop concepts to assist compound identification in PTR-MS. First, we studied differential isothermal desorption kinetics using heterogeneous inlet surface data measured by Mikoviny et al. [7] with their newly developed high-temp-PTR-MS. The best fit to their data is obtained with bimodal pseudo-first order kinetics. In addition, we explored the normalization of the data and calculated data points of the desorption isotherms. We found evidence that the interesting part of the isotherm can be linearized in a double log plot. Then we investigated the idea to use memory effects of the inlet system to assist compound identification. At the moment, the main problem is the dependence of the kinetics on the initial equilibrium gas phase adsorption concentration, and thus, the surface coverage. As a solution, we suggest an empirical, quasi-concentration independent, yet compound specific parameter: the normalized desorption time tnd describing the decline of the signal to 1/e2 of the initial concentration, normalized to an initial concentration of 10,000 counts per second (cps). Furthermore, we investigated property–property and structure–property relationships of this new parameter. Further possible improvements are discussed as well.
[Kassebacher2012] Kassebacher, T., P. Sulzer, S. Juerschik, B. Agarwal, F. Petersson, E. Hartungen, H. Seehauser, and T. D. Maerk, "Detecting and Quantifying Toxic Industrial Compounds (TICs) with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)", Future Security: Springer, pp. 438–447, 2012.
Link: http://link.springer.com/chapter/10.1007/978-3-642-33161-9_62
Abstract
In the course of the FP7-SEC project "SPIRIT" (Safety and Protection of built Infrastructure to Resist Integral Threats) we focused our research with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) on C-agents, specifically Toxic Industrial Compounds (TICs). Most TICs are readily available and represent a considerable threat when used in terroristic attacks. We show the principal procedure of PTR-MS detection measurements on two chemicals, namely phosgene and chloroacetone. With studies of the former we want to point out principle differences between measurements on a quadrupole mass filter based and a Time-of-Flight-based PTR-MS instrument and point out the respective benefits and drawbacks. For the latter we present the results of a diluted headspace measurement and illustrate the connection with security standards in buildings.
[Zehm2012] Zehm, S., S. Schweinitz, R. Wuerzner, H. Peter Colvin, and J. Rieder, "Detection of Candida albicans by mass spectrometric fingerprinting.", Curr Microbiol, vol. 64, no. 3: Department of Vascular Surgery, Innsbruck University Hospital, Anichstrasse 35, Innsbruck, Austria. sarah.zehm@gmail.com, pp. 271–275, Mar, 2012.
Link: http://dx.doi.org/10.1007/s00284-011-0064-5
Abstract
<p>Candida albicans is one of the most frequent causes of fungal infections in humans. Significant correlation between candiduria and invasive candidiasis has previously been described. The existing diagnostic methods are often time-consuming, cost-intensive and lack in sensitivity and specificity. In this study, the profile of low-molecular weight volatile compounds in the headspace of C. albicans-urine suspensions of four different fungal cell concentrations compared to nutrient media and urine without C. albicans was determined using proton-transfer reaction mass spectrometry (PTR-MS). At fungal counts of 1.5 x 10(5) colony forming units (CFU)/ml signals at 45, 47 and 73 atomic mass units (amu) highly significantly increased. At fungal counts of &lt;1.5 x 10(5) CFU/ml signals at 47 and 73 amu also increased, but only at 45 amu a statistically significant increase was seen. Time course alterations of signal intensities dependent on different cell concentrations and after addition of Sabouraud nutrient solution were analysed. Recommendations for measurement conditions are given. Our study is the first to describe headspace profiling of C. albicans-urine suspensions of different fungal cell concentrations. PTR-MS represents a promising approach to rapid, highly sensitive and non-invasive clinical diagnostics allowing qualitative and quantitative analysis.</p>
[Agarwal2012] Agarwal, B.., S.. Juerschik, P.. Sulzer, F.. Petersson, S.. Jaksch, A.. Jordan, and T.. D. Maerk, "Detection of isocyanates and polychlorinated biphenyls using proton transfer reaction mass spectrometry.", Rapid Commun Mass Spectrom, vol. 26, no. 8: Institut fuer Ionenphysik und Angewandte Physik, Leopold Franzens Universitaet Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria., pp. 983–989, Apr, 2012.
Link: http://dx.doi.org/10.1002/rcm.6173
Abstract
Isocyanates are highly reactive species widely used in industry. They can cause irritation of the eyes, trigger asthma, etc. Polychlorinated biphenyls (PCBs) were widely used in electrical equipments like capacitors and transformers in the last century and are still present in the environment today. PCBs are known to cause cancer and to affect the immune, reproductive, nervous and endocrine systems. Therefore, there is a need for a simple, rapid and reliable analytical method for the detection of traces of isocyanates and of PCBs.The data presented in this paper were obtained using a proton transfer reaction (PTR) time-of-flight mass spectrometer and a high sensitivity PTR quadrupole mass spectrometer. We also utilized a recently developed direct aqueous injection (DAI) inlet system for proton transfer reaction mass spectrometry (PTR-MS) instruments that allows the analysis of trace compounds in liquids.We detected four isocyanates in the headspace above small sample quantities and investigated their fragmentation pathways to obtain a fundamental understanding of the processes involved in proton transfer reactions and also to determine the best operating conditions of the PTR-MS instruments. In addition, nine PCBs were unambiguously identified via their exact mass and isotopic distribution and detected in different concentration levels via direct injection of the liquid.Utilizing recent developments and improvements in PTR-MS, we can rapidly detect two important environmental pollutant compound classes (isocyanates and PCBs) at high accuracy and without any sample preparation. In this paper, we provide proof of the detection of traces of isocyanates and PCBs in air and also of PCBs in liquids. These results could be used for the development of a real-time monitoring device for industrial waste, polluted air or water quality surveillance.
[Knighton2012] W Knighton, B., S. C. Herndon, J. F. Franklin, E. C. Wood, J. Wormhoudt, W. Brooks, E. C. Fortner, and D. T. Allen, "Direct measurement of volatile organic compound emissions from industrial flares using real-time online techniques: Proton Transfer Reaction Mass Spectrometry and Tunable Infrared Laser Differential Absorption Spectroscopy", Industrial & Engineering Chemistry Research, vol. 51, no. 39: ACS Publications, pp. 12674–12684, 2012.
Link: http://pubs.acs.org/doi/abs/10.1021/ie202695v
Abstract
During the 2010 Comprehensive Flare Study a suite of analytical instrumentation was employed to monitor and quantify in real-time the volatile organic compound (VOC) emissions emanating from an industrial chemical process flare burning either propene/natural gas or propane/natural gas. To our knowledge this represents the first time the VOC composition has been directly measured as a function of flare efficiency on an operational full-scale flare. This compositional information was obtained using a suite of proton-transfer-reaction mass spectrometers (PTR-MS) and quantum cascade laser tunable infrared differential absorption spectrometers (QCL-TILDAS) to measure the unburned fuel and associated combustion byproducts. Methane, ethyne, ethene, and formaldehyde were measured using the QC-TILDAS. Propene, acetaldehyde, methanol, benzene, acrolein, and the sum of the C3H6O isomers were measured with the PTR-MS. A second PTR-MS equipped with a gas chromatograph (GC) was operated in parallel and was used to verify the identity of the neutral components that were responsible for producing the ions monitored with the first PTR-MS. Additional components including 1,3-butadiene and C3H4 (propyne or allene) were identified using the GC/PTR-MS. The propene concentrations derived from the PTR-MS were found to agree with measurements made using a conventional GC with a flame ionization detector (FID). The VOC product (excludes fuel components) speciation profile is more dependent on fuel composition, propene versus propane, than on flare type, air-assisted versus steam-assisted, and is essentially constant with respect to combustion efficiency for combustion efficiencies >0.8. Propane flares produce more alkenes with ethene and propene accounting for approximately 80% (per carbon basis) of the VOC combustion product. The propene partial combustion product profile was observed to contain relatively more oxygenated material where formaldehyde and acetaldehyde are major contributors and account for 20 - 25% of VOC product carbon. Steam-assisted flares produce less ethyne and benzene than air-assisted flares. This observation is consistent with the understanding that steam assisted flares are more efficient at reducing soot, which is formed via the same reaction mechanisms that form benzene and ethyne.
2011
[Cappellin2011a] Cappellin, L., F. Biasioli, P. M. Granitto, E. Schuhfried, C. Soukoulis, F. Costa, T. D. Maerk, and F. Gasperi, "On data analysis in PTR-TOF-MS: From raw spectra to data mining", Sensors and actuators B: Chemical, vol. 155, no. 1: Elsevier, pp. 183–190, 2011.
Link: http://www.sciencedirect.com/science/article/pii/S0925400510009135
Abstract
Recently the coupling of proton transfer reaction ionization with a time-of-flight mass analyser (PTR-TOF-MS) has been proposed to realise a volatile organic compound (VOC) detector that overcomes the limitations in terms of time and mass resolution of the previous instrument based on a quadrupole mass analysers (PTR-Quad-MS). This opens new horizons for research and allows for new applications in fields where the rapid and sensitive monitoring and quantification of volatile organic compounds (VOCs) is crucial as, for instance, environmental sciences, food sciences and medicine. In particular, if coupled with appropriate data mining methods, it can provide a fast MS-nose system with rich analytical information. The main, perhaps even the only, drawback of this new technique in comparison to its precursor is related to the increased size and complexity of the data sets obtained. It appears that this is the main limitation to its full use and widespread application. Here we present and discuss a complete computer-based strategy for the data analysis of PTR-TOF-MS data from basic mass spectra handling, to the application of up-to date data mining methods. As a case study we apply the whole procedure to the classification of apple cultivars and clones, which was based on the distinctive profiles of volatile organic compound emissions.
[Bamberger2011] Bamberger, I., L. Hörtnagl, TM. Ruuskanen, R. Schnitzhofer, M. Müller, M. Graus, T. Karl, G. Wohlfahrt, and A. Hansel, "Deposition fluxes of terpenes over grassland", Journal of Geophysical Research: Atmospheres (1984–2012), vol. 116, no. D14: Wiley Online Library, 2011.
Link: http://onlinelibrary.wiley.com/doi/10.1029/2010JD015457/full
Abstract
Eddy covariance flux measurements were carried out for two subsequent vegetation periods above a temperate mountain grassland in an alpine valley using a proton-transfer-reaction-mass spectrometer (PTR-MS) and a PTR time-of-flight-mass spectrometer (PTR-TOF). In 2008 and during the first half of the vegetation period 2009 the volume mixing ratios (VMRs) for the sum of monoterpenes (MTs) were typically well below 1 ppbv and neither MT emission nor deposition was observed. After a hailstorm in July 2009 an order of magnitude higher amount of terpenes was transported to the site from nearby coniferous forests causing elevated VMRs. As a consequence, deposition fluxes of terpenes to the grassland, which continued over a time period of several weeks without significant reemission, were observed. For days without precipitation the deposition occurred at velocities close to the aerodynamic limit. In addition to monoterpene uptake, deposition fluxes of the sum of sesquiterpenes (SQTs) and the sum of oxygenated terpenes (OTs) were detected. Considering an entire growing season for the grassland (i.e., 1 April to 1 November 2009), the cumulative carbon deposition of monoterpenes reached 276 mg C m−2. This is comparable to the net carbon emission of methanol (329 mg C m−2), which is the dominant nonmethane volatile organic compound (VOC) emitted from this site, during the same time period. It is suggested that deposition of monoterpenes to terrestrial ecosystems could play a more significant role in the reactive carbon budget than previously assumed.
[Jordan2011] Jordan, A., P. and Watts, and C. A. Mayhew, "Detection and Identification of Illicit and Hazardous Substances with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)", : IONICON Analytik, 2011.
Link: http://blog.ionicon.com/wp-content/uploads/2011/08/future-security-ionicon-extended_abstract.pdf
[Sulzer2011] Sulzer, P., A. Jordan, G. Hanel, E. Hartungen, H. Seehauser, L. Märk, S. Haidacher, R. Schottkowsky, KH. Becker, and TD. Märk, "Detection of explosives Detection of explosives with Proton Transfer Reaction Transfer Reaction-Mass Spectrometry Mass Spectrometry", , 2011.
Link: http://www.ionicon.com/downloads/IONICON_Illicit-substances-detection_PTR-MS.pdf
[Brilli2011] Brilli, F., T. M. Ruuskanen, R. Schnitzhofer, M. Müller, M. Breitenlechner, V. Bittner, G. Wohlfahrt, F. Loreto, and A. Hansel, "Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction "time-of-flight" mass spectrometry (PTR-TOF).", PLoS One, vol. 6, no. 5: Ionicon Analytik G.m.b.H., Innsbruck, Austria., pp. e20419, 2011.
Link: http://dx.doi.org/10.1371/journal.pone.0020419
Abstract
Proton transfer reaction-time of flight (PTR-TOF) mass spectrometry was used to improve detection of biogenic volatiles organic compounds (BVOCs) induced by leaf wounding and darkening. PTR-TOF measurements unambiguously captured the kinetic of the large emissions of green leaf volatiles (GLVs) and acetaldehyde after wounding and darkening. GLVs emission correlated with the extent of wounding, thus confirming to be an excellent indicator of mechanical damage. Transient emissions of methanol, C5 compounds and isoprene from plant species that do not emit isoprene constitutively were also detected after wounding. In the strong isoprene-emitter Populus alba, light-dependent isoprene emission was sustained and even enhanced for hours after photosynthesis inhibition due to leaf cutting. Thus isoprene emission can uncouple from photosynthesis and may occur even after cutting leaves or branches, e.g., by agricultural practices or because of abiotic and biotic stresses. This observation may have important implications for assessments of isoprene sources and budget in the atmosphere, and consequences for tropospheric chemistry.
[Han2011] Han, KH., JS. Zhang, H. Nellemose Knudsen, P. Wargocki, H. Chen, PK. Varshney, and B. Guo, "Development of a novel methodology for indoor emission source identification", Atmospheric Environment, vol. 45, no. 18: Pergamon, pp. 3034–3045, 2011.
Link: http://works.bepress.com/cgi/viewcontent.cgi?article=1004&amp;context=shimsong
Abstract
The objective of this study was to develop and evaluate a methodology to identify individual sources of emissions based on the measurements of mixed air samples and the emission signatures of individual materials previously determined by Proton Transfer Reaction-Mass Spectrometry (PTR-MS), an on-line analytical device. The methodology based on signal processing principles was developed by employing the method of multiple regression least squares (MRLS) and a normalization technique. Samples of nine typical building materials were tested individually and in combination, including carpet, ceiling material, gypsum board, linoleum, two paints, polyolefine, PVC and wood. Volatile Organic Compound (VOC) emissions from each material were measured in a 50-liter small-scale chamber. Chamber air was sampled by PTR-MS to establish a database of emission signatures unique to each individual material. The same task was performed to measure combined emissions from material mixtures for the application and validation of the developed signal separation method. Results showed that the proposed method could identify the individual sources under laboratory conditions with two, three, five and seven materials present. Further experiments and investigation are needed for cases where the relative emission rates among different compounds may change over a long-term period.
[1492] Misztal, P.. K., E.. Nemitz, B.. Langford, C.. F. Di Marco, G.. J. Phillips, C.. N. Hewitt, A.. R. MacKenzie, S.. M. Owen, D.. Fowler, M.. R. Heal, et al., "Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia", Atmospheric Chemistry and Physics, vol. 11, pp. 8995–9017, 2011.
Link: http://www.atmos-chem-phys.net/11/8995/2011/
Abstract
<p>This paper reports the first direct eddy covariance fluxes of reactive biogenic volatile organic compounds (BVOCs) from oil palms to the atmosphere using proton-transfer-reaction mass spectrometry (PTR-MS), measured at a plantation in Malaysian Borneo. At midday, net isoprene flux constituted the largest fraction (84 %) of all emitted BVOCs measured, at up to 30 mg m&minus;2 h&minus;1 over 12 days. By contrast, the sum of its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) exhibited clear deposition of 1 mg m&minus;2 h&minus;1, with a small average canopy resistance of 230 s m&minus;1. Approximately 15 % of the resolved BVOC flux from oil palm trees could be attributed to floral emissions, which are thought to be the largest reported biogenic source of estragole and possibly also toluene. Although on average the midday volume mixing ratio of estragole exceeded that of toluene by almost a factor of two, the corresponding fluxes of these two compounds were nearly the same, amounting to 0.81 and 0.76 mg m&minus;2 h&minus;1, respectively. By fitting the canopy temperature and PAR response of the MEGAN emissions algorithm for isoprene and other emitted BVOCs a basal emission rate of isoprene of 7.8 mg m&minus;2 h&minus;1 was derived. We parameterise fluxes of depositing compounds using a resistance approach using direct canopy measurements of deposition. Consistent with Karl et al. (2010), we also propose that it is important to include deposition in flux models, especially for secondary oxidation products, in order to improve flux predictions.</p>
[Biasioli2011] Biasioli, F., C. Yeretzian, T. D. Märk, J. Dewulf, and H. Van Langenhove, "Direct-injection mass spectrometry adds the time dimension to (B) VOC analysis", TrAC Trends in Analytical Chemistry, vol. 30, no. 7: Elsevier, pp. 1003–1017, 2011.
Link: http://www.sciencedirect.com/science/article/pii/S0165993611001269
Abstract
In the past decade, we have witnessed rapid development of direct-injection mass spectrometric (DIMS) technologies that combine ever-improving mass and time resolution with high sensitivity and robustness. Here, we review some of the most significant DIMS technologies, which have been applied to rapid monitoring and quantification of volatile organic compounds (VOCs) and biogenic VOCS (BVOCs). They include MS-e-noses, atmospheric-pressure chemical ionization (APCI), proton-transfer-reaction mass spectrometry (PTR-MS), and selected ion-flow-tube mass spectrometry (SIFT-MS). DIMS-based MS-e-noses provide the possibility to screen large sample sets and may yield rich analytical information. APCI is a widespread ionization method and pioneered DIMS in environmental and flavor-release applications. SIFT-MS and PTR-MS allow better control of precursor-ion generation and hence of the ionization process. SIFT-MS puts the focus on control of the ionization process, while PTR-MS does so on sensitivity. Most (B)VOCs of interest can be efficiently detected and often identified by DIMS, thanks also to the possibility of switching between different precursor ions and the recent realization of time-of-flight-based equipments. Finally, we give selected examples of applications for each of the key technologies, including research in food-quality control (MS-e-nose), flavor release (APCI), environmental sciences (PTR-MS) and health sciences (SIFT-MS).

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.