Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Desc)]
Search results for flux
Filters: Author is Hayward, Sean  [Reset Search]
2004
[Hayward2004] Hayward, S., A. Tani, S. M. Owen, and N. C Hewitt, "Online analysis of volatile organic compound emissions from Sitka spruce (Picea sitchensis).", Tree Physiol, vol. 24, no. 7: Institute of Environmental and Natural Sciences, Lancaster University, Lancaster, LA1 4YQ, U.K., pp. 721–728, Jul, 2004.
Link: http://treephys.oxfordjournals.org/content/24/7/721.short
Abstract
Volatile organic compound (VOC) emissions from Sitka spruce (Picea sitchensis Bong.) growing in a range of controlled light and temperature regimes were monitored online with a proton transfer reaction-mass spectrometer (PTR-MS) operating at a temporal resolution of approximately 1 min. Isoprene emissions accounted for an average of more than 70% of measured VOCs and up to 3.5% of assimilated carbon. Emission rates (E) for isoprene correlated closely with photosynthetic photon flux (PPF) and temperature, showing saturation at a PPF of between 300 and 400 micromol m(-2) s(-1) and a maximum between 35 and 38 degrees C. Under standard conditions of 30 degrees C and 1000 micromol m(-2) s(-1) PPF, the mean isoprene E was 13 microg gdm(-1) h(-1), considerably higher than previously observed in this species. Mean E for acetaldehyde, methanol and monoterpenes at 30 degrees C were 0.37, 0.78 and 2.97 microg gdm(-1) h(-1), respectively. In response to a sudden light to dark transition, isoprene E decreased exponentially by > 98% over about 3 h; however, during the first 7 min, this otherwise steady decay was temporarily but immediately depressed to approximately 40% of the pre-darkness rate, before rallying during the following 7 min to rejoin the general downward trajectory of the exponential decay. The sudden sharp fall in isoprene E was mirrored by a burst in acetaldehyde E. The acetaldehyde E maximum coincided with the isoprene E minimum (7 min post-illumination), and ceased when isoprene emissions resumed their exponential decay. The causes of, and linkages between, these phenomena were investigated.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.