Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 4 results
Title [ Year(Desc)]
Search results for flux
Filters: Author is Wisthaler, Armin  [Reset Search]
2004
[Graus2004] Graus, M., JÖRG-PETER. SCHNITZLER, A. Hansel, C. Cojocariu, H. Rennenberg, A. Wisthaler, and J. Kreuzwieser, "Transient release of oxygenated volatile organic compounds during light-dark transitions in grey poplar leaves", Plant Physiology, vol. 135, no. 4: American Society of Plant Biologists, pp. 1967–1975, 2004.
Link: http://www.plantphysiology.org/content/135/4/1967.short
Abstract
In this study, we investigated the prompt release of acetaldehyde and other oxygenated volatile organic compounds (VOCs) from leaves of Grey poplar [Populus x canescens (Aiton) Smith] following light-dark transitions. Mass scans utilizing the extremely fast and sensitive proton transfer reaction-mass spectrometry technique revealed the following temporal pattern after light-dark transitions: hexenal was emitted first, followed by acetaldehyde and other C6-VOCs. Under anoxic conditions, acetaldehyde was the only compound released after switching off the light. This clearly indicated that hexenal and other C6-VOCs were released from the lipoxygenase reaction taking place during light-dark transitions under aerobic conditions. Experiments with enzyme inhibitors that artificially increased cytosolic pyruvate demonstrated that the acetaldehyde burst after light-dark transition could not be explained by the recently suggested pyruvate overflow mechanism. The simulation of light fleck situations in the canopy by exposing leaves to alternating light-dark and dark-light transitions or fast changes from high to low photosynthetic photon flux density showed that this process is of minor importance for acetaldehyde emission into the Earth's atmosphere.
2005
[Jacob2005] Jacob, D. J., B. D. Field, Q. Li, D. R. Blake, J. de Gouw, C. Warneke, A. Hansel, A. Wisthaler, H. B. Singh, and A. Guenther, "Global budget of methanol: Constraints from atmospheric observations", Journal of Geophysical Research: Atmospheres (1984–2012), vol. 110, no. D8: Wiley Online Library, 2005.
Link: http://onlinelibrary.wiley.com/doi/10.1029/2004JD005172/full
Abstract
We use a global three-dimensional model simulation of atmospheric methanol to examine the consistency between observed atmospheric concentrations and current understanding of sources and sinks. Global sources in the model include 128 Tg yr−1 from plant growth, 38 Tg yr−1 from atmospheric reactions of CH3O2 with itself and other organic peroxy radicals, 23 Tg yr−1 from plant decay, 13 Tg yr−1 from biomass burning and biofuels, and 4 Tg yr−1 from vehicles and industry. The plant growth source is a factor of 3 higher for young than from mature leaves. The atmospheric lifetime of methanol in the model is 7 days; gas-phase oxidation by OH accounts for 63% of the global sink, dry deposition to land 26%, wet deposition 6%, uptake by the ocean 5%, and aqueous-phase oxidation in clouds less than 1%. The resulting simulation of atmospheric concentrations is generally unbiased in the Northern Hemisphere and reproduces the observed correlations of methanol with acetone, HCN, and CO in Asian outflow. Accounting for decreasing emission from leaves as they age is necessary to reproduce the observed seasonal variation of methanol concentrations at northern midlatitudes. The main model discrepancy is over the South Pacific, where simulated concentrations are a factor of 2 too low. Atmospheric production from the CH3O2 self-reaction is the dominant model source in this region. A factor of 2 increase in this source (to 50–100 Tg yr−1) would largely correct the discrepancy and appears consistent with independent constraints on CH3O2 concentrations. Our resulting best estimate of the global source of methanol is 240 Tg yr−1. More observations of methanol concentrations and fluxes are needed over tropical continents. Better knowledge is needed of CH3O2 concentrations in the remote troposphere and of the underlying organic chemistry.
[Beauchamp2005] Beauchamp, J., A. Wisthaler, A. Hansel, E. Kleist, M. Miebach, ÜLO. NIINEMETS, U. Schurr, and JÜRGEN. WILDT, "Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products", Plant, Cell & Environment, vol. 28, no. 10: Wiley Online Library, pp. 1334–1343, 2005.
Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01383.x/full
Abstract
Volatile organic compound (VOC) emissions from tobacco (Nicotiana tabacum L. var. Bel W3) plants exposed to ozone (O3) were investigated using proton-transfer-reaction mass-spectrometry (PTR-MS) and gas chromatography mass-spectrometry (GC-MS) to find a quantitative reference for plants’ responses to O3 stress. O3 exposures to illuminated plants induced post-exposure VOC emission bursts. The lag time for the onset of volatile C6 emissions produced within the octadecanoid pathway was found to be inversely proportional to O3 uptake, or more precisely, to the O3 flux density into the plants. In cases of short O3 pulses of identical duration the total amount of these emitted C6 VOC was related to the O3 flux density into the plants, and not to ozone concentrations or dose–response relationships such as AOT 40 values. Approximately one C6 product was emitted per five O3 molecules taken up by the plant. A threshold flux density of O3 inducing emissions of C6 products was found to be (1.6 ± 0.7) × 10−8 mol m−2 s−1.
2006
[Graus2006] Graus, M., A. Hansel, A. Wisthaler, C. Lindinger, R. Forkel, K. Hauff, M. Klauer, A. Pfichner, B. Rappenglück, D. Steigner, et al., "A relaxed-eddy-accumulation method for the measurement of isoprenoid canopy-fluxes using an online gas-chromatographic technique and PTR-MS simultaneously", Atmospheric Environment, vol. 40: Elsevier, pp. 43–54, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S1352231006003190
Abstract
A relaxed-eddy-accumulation set-up using an online gas-chromatographic technique and proton-transfer-reaction mass spectrometry was applied to determine isoprenoid fluxes above a Norway spruce forest in July 2001/2002. The system was quality assured and its suitability for determination of canopy fluxes of isoprenoids was demonstrated. Flux measurements of oxygenated hydrocarbons failed the data quality check due to artefacts presumably arising from line and ozone-scrubber effects. Observations of turbulent fluxes of isoprenoids during the two field experiments show good agreements with primary flux data derived from enclosure measurements and modelling results using a canopy-chemistry emission model (CACHE).

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.