Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Search results for flux
Filters: Author is Thomas Karl  [Reset Search]
2014
[1549] Karl, T., L. Kaser, and A. Turnipseed, "Eddy covariance measurements of isoprene and 232-MBO based on NO+ time-of-flight mass spectrometry", International Journal of Mass Spectrometry, vol. 365-366, pp. 15 - 19, 2014.
Link: http://www.sciencedirect.com/science/article/pii/S1387380613004272
Abstract
<div>Isoprene and 2-methyl-3-buten-2-ol (232-MBO) are the dominant</div> <div>biogenic \{VOCs\} released throughout the US, thus requiring simultaneous</div> <div>measurements. Recent measurements suggest the presence of isoprene</div> <div>in 232-MBO dominated ecosystems, however analytical difficulties</div> <div>make it problematic to detect both species independently. Based on</div> <div>a new chemical ionization scheme we use eddy covariance measurements</div> <div>to selectively measure fluxes of both species without analytical</div> <div>interference at the Manitou Experimental Forest (MEF) in Colorado.</div> <div>Our measurements show a concentration ratio between isoprene and</div> <div>232 \{MBO\} of 0.24 (ppbv/ppbv), and a flux ratio of 0.10 ([ppbv m/s]/[ppbv m/s]).</div> <div>Daytime average emission factors of isoprene and 232 \{MBO\} were</div> <div>1.4 +/- 0.3 and 16.0 +/- &nbsp;3.0 mg/m^2/h respectively.</div> <div>Both compounds exhibit light and temperature dependent fluxes. These</div> <div>findings suggest that isoprene is both locally produced and transported</div> <div>to the measurement site dominated by ponderosa pine. This makes it</div> <div>difficult to use \{MVK\} and \{MAC\} as tracers for estimating the</div> <div>photochemical age of isoprene chemistry at this site. Further our</div> <div>measurements suggest that isoprene can contribute to about 15% of</div> <div>the \{OH\} reactivity relative to 232 MBO.</div>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.