Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 3 results
Title [ Year(Asc)]
Search results for flux
Filters: Author is Müller, Markus  [Reset Search]
2015
[1624] Hu, L., D. B. Millet, M. Baasandorj, T. J. Griffis, K. R. Travis, C. W. Tessum, J. D. Marshall, W. F. Reinhart, T. Mikoviny, M. Müller, et al., "Emissions of C 6 -C 8 aromatic compounds in the United States: Constraints from tall tower and aircraft measurements", Journal of Geophysical Research: Atmospheres, vol. 120, pp. 826–842, Jan, 2015.
Link: http://dx.doi.org/10.1002/2014JD022627
Abstract
<p>We present two full years of continuous C6&ndash;C8 aromatic compound measurements by PTR-MS at the KCMP tall tower (Minnesota, US) and employ GEOS-Chem nested grid simulations in a Bayesian inversion to interpret the data in terms of new constraints on US aromatic emissions. Based on the tall tower data, we find that the RETRO inventory (year-2000) overestimates US C6&ndash;C8 aromatic emissions by factors of 2.0&ndash;4.5 during 2010&ndash;2011, likely due in part to post-2000 reductions. Likewise, our implementation of the US EPA&#39;s NEI08 overestimates the toluene flux by threefold, reflecting an inventory bias in non-road emissions plus uncertainties associated with species lumping. Our annual top-down emission estimates for benzene and C8 aromatics agree with the NEI08 bottom-up values, as does the inferred contribution from non-road sources. However, the NEI08 appears to underestimate on-road emissions of these compounds by twofold during the warm season. The implied aromatic sources upwind of North America are more than double the prior estimates, suggesting a substantial underestimate of East Asian emissions, or large increases there since 2000. Long-range transport exerts an important influence on ambient benzene over the US: on average 43% of its wintertime abundance in the US Upper Midwest is due to sources outside North America. Independent aircraft measurements show that the inventory biases found here for C6&ndash;C8 aromatics also apply to other parts of the US, with notable exceptions for toluene in California and Houston, Texas. Our best estimates of year-2011 contiguous US emissions are 206 (benzene), 408 (toluene), and 822 (C8 aromatics) GgC.</p>
[1794] Hu, L., D. B. Millet, M. Baasandorj, T. J. Griffis, K. R. Travis, C. W. Tessum, J. D. Marshall, W. F. Reinhart, T. Mikoviny, M. Müller, et al., "Emissions of C6–C8 aromatic compounds in the United States: Constraints from tall tower and aircraft measurements", Journal of Geophysical Research: Atmospheres, vol. 120, pp. 826–842, 2015.
Link: http://onlinelibrary.wiley.com/doi/10.1002/2014JD022627/abstract
Abstract
<p>We present two full years of continuous C6&ndash;C8 aromatic compound measurements by PTR-MS at the KCMP tall tower (Minnesota, US) and employ GEOS-Chem nested grid simulations in a Bayesian inversion to interpret the data in terms of new constraints on US aromatic emissions. Based on the tall tower data, we find that the RETRO inventory (year-2000) overestimates US C6&ndash;C8 aromatic emissions by factors of 2.0&ndash;4.5 during 2010&ndash;2011, likely due in part to post-2000 reductions. Likewise, our implementation of the US EPA&#39;s NEI08 overestimates the toluene flux by threefold, reflecting an inventory bias in non-road emissions plus uncertainties associated with species lumping. Our annual top-down emission estimates for benzene and C8 aromatics agree with the NEI08 bottom-up values, as does the inferred contribution from non-road sources. However, the NEI08 appears to underestimate on-road emissions of these compounds by twofold during the warm season. The implied aromatic sources upwind of North America are more than double the prior estimates, suggesting a substantial underestimate of East Asian emissions, or large increases there since 2000. Long-range transport exerts an important influence on ambient benzene over the US: on average 43% of its wintertime abundance in the US Upper Midwest is due to sources outside North America. Independent aircraft measurements show that the inventory biases found here for C6&ndash;C8 aromatics also apply to other parts of the US, with notable exceptions for toluene in California and Houston, Texas. Our best estimates of year-2011 contiguous US emissions are 206 (benzene), 408 (toluene), and 822 (C8 aromatics) GgC.</p>
2011
[1587] Hörtnagl, L., I. Bamberger, M. Graus, T. M. Ruuskanen, R. Schnitzhofer, M. Müller, A. Hansel, and G. Wohlfahrt, "Biotic, abiotic and management controls on methanol exchange above a temperate mountain grassland.", J Geophys Res Biogeosci, vol. 116, Sep, 2011.
Link: http://dx.doi.org/10.1029/2011jg001641
Abstract
<p>Methanol (CH3OH) fluxes were quantified above a managed temperate mountain grassland in the Stubai Valley (Tyrol, Austria) during the growing seasons 2008 and 2009. Half-hourly methanol fluxes were calculated by means of the virtual disjunct eddy covariance (vDEC) method using 3-dimensional wind data from a sonic anemometer and methanol volume mixing ratios measured with a proton-transfer-reaction mass spectrometer (PTR-MS). During (undisturbed) mature and growing phases methanol fluxes exhibited a clear diurnal cycle with close-to-zero fluxes during nighttime and emissions, up to 10 nmol m(-2) s(-1), which followed the diurnal course of radiation and air temperature. Management events were found to represent the largest perturbations of methanol exchange at the studied grassland ecosystem: Peak emissions of 144.5 nmol m(-2) s(-1) were found during/after cutting of the meadow reflecting the wounding of the plant material and subsequent depletion of the leaf internal aqueous methanol pools. After the application of organic fertilizer, elevated methanol emissions of up to 26.7 nmol m(-2) s(-1) were observed, likely reflecting enhanced microbial activity associated with the applied manure. Simple and multiple linear regression analyses revealed air temperature and radiation as the dominant abiotic controls, jointly explaining 47 % and 70 % of the variability in half-hourly and daily methanol fluxes. In contrast to published leaf-level laboratory studies, the surface conductance and the daily change in the amount of green plant area, used as ecosystem-scale proxies for stomatal conductance and growth, respectively, were found to exert only minor biotic controls on methanol exchange.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.