Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 10 results
[ Title(Desc)] Year
Filters: Author is Graus, Martin  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
[1587] Hörtnagl, L., I. Bamberger, M. Graus, T. M. Ruuskanen, R. Schnitzhofer, M. Müller, A. Hansel, and G. Wohlfahrt, "Biotic, abiotic and management controls on methanol exchange above a temperate mountain grassland.", J Geophys Res Biogeosci, vol. 116, Sep, 2011.
Link: http://dx.doi.org/10.1029/2011jg001641
Abstract
<p>Methanol (CH3OH) fluxes were quantified above a managed temperate mountain grassland in the Stubai Valley (Tyrol, Austria) during the growing seasons 2008 and 2009. Half-hourly methanol fluxes were calculated by means of the virtual disjunct eddy covariance (vDEC) method using 3-dimensional wind data from a sonic anemometer and methanol volume mixing ratios measured with a proton-transfer-reaction mass spectrometer (PTR-MS). During (undisturbed) mature and growing phases methanol fluxes exhibited a clear diurnal cycle with close-to-zero fluxes during nighttime and emissions, up to 10 nmol m(-2) s(-1), which followed the diurnal course of radiation and air temperature. Management events were found to represent the largest perturbations of methanol exchange at the studied grassland ecosystem: Peak emissions of 144.5 nmol m(-2) s(-1) were found during/after cutting of the meadow reflecting the wounding of the plant material and subsequent depletion of the leaf internal aqueous methanol pools. After the application of organic fertilizer, elevated methanol emissions of up to 26.7 nmol m(-2) s(-1) were observed, likely reflecting enhanced microbial activity associated with the applied manure. Simple and multiple linear regression analyses revealed air temperature and radiation as the dominant abiotic controls, jointly explaining 47 % and 70 % of the variability in half-hourly and daily methanol fluxes. In contrast to published leaf-level laboratory studies, the surface conductance and the daily change in the amount of green plant area, used as ecosystem-scale proxies for stomatal conductance and growth, respectively, were found to exert only minor biotic controls on methanol exchange.</p>
C
[Schnitzler2004] SCHNITZLER, JÖRG-PETER., M. Graus, J. Kreuzwieser, U. Heizmann, H. Rennenberg, A. Wisthaler, and A. Hansel, "Contribution of different carbon sources to isoprene biosynthesis in poplar leaves", Plant Physiology, vol. 135, no. 1: Am Soc Plant Biol, pp. 152–160, 2004.
Link: http://www.plantphysiol.org/content/135/1/152.short
Abstract
This study was performed to test if alternative carbon sources besides recently photosynthetically fixed CO2 are used for isoprene formation in the leaves of young poplar (Populus × canescens) trees. In a 13CO2 atmosphere under steady state conditions, only about 75% of isoprene became 13C labeled within minutes. A considerable part of the unlabeled carbon may be derived from xylem transported carbohydrates, as may be shown by feeding leaves with [U-13C]Glc. As a consequence of this treatment approximately 8% to 10% of the carbon emitted as isoprene was 13C labeled. In order to identify further carbon sources, poplar leaves were depleted of leaf internal carbon pools and the carbon pools were refilled with 13C labeled carbon by exposure to 13CO2. Results from this treatment showed that about 30% of isoprene carbon became 13C labeled, clearly suggesting that, in addition to xylem transported carbon and CO2, leaf internal carbon pools, e.g. starch, are used for isoprene formation. This use was even increased when net assimilation was reduced, for example by abscisic acid application. The data provide clear evidence of a dynamic exchange of carbon between different cellular precursors for isoprene biosynthesis, and an increasing importance of these alternative carbon pools under conditions of limited photosynthesis. Feeding [1,2-13C]Glc and [3-13C]Glc to leaves via the xylem suggested that alternative carbon sources are probably derived from cytosolic pyruvate/phosphoenolpyruvate equivalents and incorporated into isoprene according to the predicted cleavage of the 3-C position of pyruvate during the initial step of the plastidic deoxyxylulose-5-phosphate pathway.
D
[1584] Hörtnagl, L., R. Clement, M. Graus, A. Hammerle, A. Hansel, and G. Wohlfahrt, "Dealing with disjunct concentration measurements in eddy covariance applications: a comparison of available approaches.", Atmos Environ (1994), vol. 44, May, 2010.
Link: http://www.sciencedirect.com/science/article/pii/S1352231010001810
Abstract
<p>Using proton transfer reaction mass spectrometry equipped with a quadrupol mass analyser to quantify the biosphere-atmosphere exchange of volatile organic compounds (VOC), concentrations of different VOC are measured sequentially. Depending on how many VOC species are targeted and their respective integration times, each VOC is measured at repeat rates on the order of a few seconds. This represents an order of magnitude longer sample interval compared to the standard eddy covariance (EC) method (5-20 Hz sampling rates). Here we simulate the effect of disjunct sampling on EC flux estimates by decreasing the time resolution of CO2 and H2O concentrations measured at 20 Hz above a temperate mountain grassland in the Austrian Alps. Fluxes for one month are calculated with the standard EC method and compared to fluxes calculated based on the disjunct data (1, 3 and 5 s sampling rates) using the following approaches: i) imputation of missing concentrations based on the nearest neighbouring samples (iDECnn), ii) imputation by linear interpolation (iDECli), and iii) virtual disjunct EC (vDEC), i.e. flux calculation based solely on the disjunct concentrations. It is shown that the two imputation methods result in additional low-pass filtering, longer lag times (as determined with the maximum cross-correlation method) and a flux loss of 3-30 % as compared to the standard EC method. A novel procedure, based on a transfer function approach, which specifically corrects for the effect of data treatment, was developed, resulting in improved correspondence (to within 2 %). The vDEC method yields fluxes which approximate the true (20 Hz) fluxes to within 3-7 % and it is this approach we recommend because it involves no additional empirical corrections. The only drawback of the vDEC method is the noisy nature of the cross-correlations, which poses problems with lag determination - practical approaches to overcome this limitation are discussed.</p>
H
[Graus2010] Graus, M., M. Müller, and A. Hansel, "High resolution PTR-TOF: quantification and formula confirmation of VOC in real time.", J Am Soc Mass Spectrom, vol. 21, no. 6: University of Innsbruck, Institute of Ion Physics and Applied Physics, Innsbruck, Austria., pp. 1037–1044, Jun, 2010.
Link: http://dx.doi.org/10.1016/j.jasms.2010.02.006
Abstract
We present the unprecedented capability to identify and quantify volatile organic compounds (VOCs) by means of proton transfer reaction time-of-flight (PTR-TOF) mass spectrometry on-line with high time resolution. A mass resolving power of 4000-5000 and a mass accuracy of 2.5 ppm allow for the unambiguous sum-formula identification of hydrocarbons (HCs) and oxygenated VOCs (OVOCs). Test masses measured over an 11-wk period are very precise (SD < 3.4 ppm) and the mass resolving power shows good stability (SD < 5%). Based on a 1 min time resolution, we demonstrate a detection limit in the low pptv range featuring a dynamic range of six orders of magnitude. Sub-ppbv VOC concentrations are analyzed within a second; sub-pptv detection limits are achieved within a few tens of minutes. We present a thorough characterization of our recently developed PTR-TOF system and address application fields for the new instrument.
O
[Herbig2009a] Herbig, J., M. Müller, S. Schallhart, T. Titzmann, M. Graus, and A. Hansel, "On-line breath analysis with PTR-TOF.", J Breath Res, vol. 3, no. 2: Ionimed Analytik GmbH, Innsbruck, Austria., pp. 027004, Jun, 2009.
Link: http://dx.doi.org/10.1088/1752-7155/3/2/027004
Abstract
We report on on-line breath gas analysis with a new type of analytical instrument, which represents the next generation of proton-transfer-reaction mass spectrometers. This time-of-flight mass spectrometer in combination with the soft proton-transfer-reaction ionization (PTR-TOF) offers numerous advantages for the sensitive detection of volatile organic compounds and overcomes several limitations. First, a time-of-flight instrument allows for a measurement of a complete mass spectrum within a fraction of a second. Second, a high mass resolving power enables the separation of isobaric molecules and the identification of their chemical composition. We present the first on-line breath measurements with a PTR-TOF and demonstrate the advantages for on-line breath analysis. In combination with buffered end-tidal (BET) sampling, we obtain a complete mass spectrum up to 320 Th within one exhalation with a signal-to-noise ratio sufficient to measure down to pptv levels. We exploit the high mass resolving power to identify the main components in the breath composition of several healthy volunteers.
R
[Schaub2010] Schaub, A., J. D. Blande, M. Graus, E. Oksanen, J. K. Holopainen, and A. Hansel, "Real-time monitoring of herbivore induced volatile emissions in the field.", Physiol Plant, vol. 138, no. 2: Ionicon Analytik GmbH, Technikerstrasse 21a, 6020 Innsbruck, Austria., pp. 123–133, Feb, 2010.
Link: http://dx.doi.org/10.1111/j.1399-3054.2009.01322.x
Abstract
When plants are damaged by herbivorous insects they emit a blend of volatile organic compounds (VOCs) which include a range or terpenoids and green leaf volatiles (GLVs) formed via different metabolic pathways. The precise timing of these emissions upon the onset of herbivore feeding has not been fully elucidated, and the information that is available has been mainly obtained through laboratory based studies. We investigated emissions of VOCs from Populus tremula L. xP. tremuloides Michx. during the first 20 h of feeding by Epirrita autumnata (autumnal moth) larvae in a field site. The study was conducted using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) to measure emissions online, with samples collected for subsequent analysis by complementary gas chromatography-mass spectrometry for purposes of compound identification. GLV emission peaks occurred sporadically from the outset, indicating herbivore activity, while terpene emissions were induced within 16 h. We present data detailing the patterns of monoterpene (MT), GLV and sesquiterpene (SQT) emissions during the early stages of herbivore feeding showing diurnal MT and SQT emission that is correlated more with temperature than light. Peculiarities in the timing of SQT emissions prompted us to conduct a thorough characterization of the equipment used to collect VOCs and thus corroborate the accuracy of results. A laboratory based analysis of the throughput of known GLV, MT and SQT standards at different temperatures was made with PTR-MS. Enclosure temperatures of 12, 20 and 25 degrees C had little influence on the response time for dynamic measurements of a GLV or MT. However, there was a clear effect on SQT measurements. Elucidation of emission patterns in real-time is dependent upon the dynamics of cuvettes at different temperatures.
[Graus2006] Graus, M., A. Hansel, A. Wisthaler, C. Lindinger, R. Forkel, K. Hauff, M. Klauer, A. Pfichner, B. Rappenglück, D. Steigner, et al., "A relaxed-eddy-accumulation method for the measurement of isoprenoid canopy-fluxes using an online gas-chromatographic technique and PTR-MS simultaneously", Atmospheric Environment, vol. 40: Elsevier, pp. 43–54, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S1352231006003190
Abstract
A relaxed-eddy-accumulation set-up using an online gas-chromatographic technique and proton-transfer-reaction mass spectrometry was applied to determine isoprenoid fluxes above a Norway spruce forest in July 2001/2002. The system was quality assured and its suitability for determination of canopy fluxes of isoprenoids was demonstrated. Flux measurements of oxygenated hydrocarbons failed the data quality check due to artefacts presumably arising from line and ozone-scrubber effects. Observations of turbulent fluxes of isoprenoids during the two field experiments show good agreements with primary flux data derived from enclosure measurements and modelling results using a canopy-chemistry emission model (CACHE).
T
[Forkel2006] Forkel, R., O. Klemm, M. Graus, B. Rappenglück, W. R. Stockwell, W. Grabmer, A. Held, A. Hansel, and R. Steinbrecher, "Trace gas exchange and gas phase chemistry in a Norway spruce forest: A study with a coupled 1-dimensional canopy atmospheric chemistry emission model", Atmospheric Environment, vol. 40: Elsevier, pp. 28–42, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S1352231006003189
Abstract
Numerical modelling is an efficient tool to investigate the role of chemical degradation of biogenic volatile organic compounds (BVOC) and the effect of dynamical processes on BVOC and product mixing ratios within and above forest canopies. The present study shows an application of the coupled canopy-chemistry model CACHE to a Norway spruce forest at the Waldstein (Fichtelgebirge, Germany). Simulated courses of temperature, trace gas mixing ratios, and fluxes are compared with measurements taken during the BEWA2000 field campaigns. The model permits the interpretation of the observed diurnal course of ozone and VOC by investigating the role of turbulent exchange, chemical formation and degradation, emission, and deposition during the course of the day. The simulation results show that BVOC fluxes into the atmosphere are 10–15% lower than the emission fluxes on branch basis due to chemical BVOC degradation within the canopy. BVOC degradation by the NO3 radical was found to occur in the lower part of the canopy also during daytime. Furthermore, the simulations strongly indicate that further research is still necessary concerning the emission and deposition of aldehydes and ketones.
[Graus2004] Graus, M., JÖRG-PETER. SCHNITZLER, A. Hansel, C. Cojocariu, H. Rennenberg, A. Wisthaler, and J. Kreuzwieser, "Transient release of oxygenated volatile organic compounds during light-dark transitions in grey poplar leaves", Plant Physiology, vol. 135, no. 4: American Society of Plant Biologists, pp. 1967–1975, 2004.
Link: http://www.plantphysiology.org/content/135/4/1967.short
Abstract
In this study, we investigated the prompt release of acetaldehyde and other oxygenated volatile organic compounds (VOCs) from leaves of Grey poplar [Populus x canescens (Aiton) Smith] following light-dark transitions. Mass scans utilizing the extremely fast and sensitive proton transfer reaction-mass spectrometry technique revealed the following temporal pattern after light-dark transitions: hexenal was emitted first, followed by acetaldehyde and other C6-VOCs. Under anoxic conditions, acetaldehyde was the only compound released after switching off the light. This clearly indicated that hexenal and other C6-VOCs were released from the lipoxygenase reaction taking place during light-dark transitions under aerobic conditions. Experiments with enzyme inhibitors that artificially increased cytosolic pyruvate demonstrated that the acetaldehyde burst after light-dark transition could not be explained by the recently suggested pyruvate overflow mechanism. The simulation of light fleck situations in the canopy by exposing leaves to alternating light-dark and dark-light transitions or fast changes from high to low photosynthetic photon flux density showed that this process is of minor importance for acetaldehyde emission into the Earth's atmosphere.
X
[Kreuzwieser2002] Kreuzwieser, J., M. Graus, A. Wisthaler, A. Hansel, H. Rennenberg, and JÖRG-PETER. SCHNITZLER, "Xylem-transported glucose as an additional carbon source for leaf isoprene formation in Quercus robur", New Phytologist, vol. 156, no. 2: Wiley Online Library, pp. 171–178, 2002.
Link: http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2002.00516.x/full
Abstract
In order to test whether xylem-transported carbohydrates are a potential source for isoprene biosynthesis, [U- 13 C]-labelled α- d -glucose was fed via cut ends of stems into the xylem of Quercus robur seedlings and the incorporation of 13 C into isoprene emitted was studied. Emission of 13 C-labelled isoprene was monitored in real time by proton-transfer-reaction mass spectrometry (PTR-MS). A rapid incorporation of 13 C from xylem-fed glucose into single (mass 70) and double (mass 71) 13 C-labelled isoprene molecules was observed after a lag phase of approx. 5–10 min. This incorporation was temperature dependent and was highest (up to 13% 13 C of total carbon emitted as isoprene) at the temperature optimum of isoprene emission (40–42°C), when net assimilation was strongly reduced.   Fast dark-to-light transitions led to a strong single or double 13 C-labelling of isoprene from xylem-fed [U-13C]glucose. During a period of 10–15 min up to 86% of all isoprene molecules became single or double 13 C-labelled, resulting in a 13 C-portion of up to 27% of total carbon emitted as isoprene.   The results provide evidence that xylem-transported glucose or its degradation products can potentially be used as additional precursors for isoprene biosynthesis and that this carbon source becomes more important under conditions of limited photosynthesis.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.