Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 3 results
[ Title(Desc)] Year
Filters: Author is Fischer, Lukas  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
[Fischer2013a] Fischer, L., A. Klinger, J. Herbig, K. Winkler, R. Gutmann, and A. Hansel, "The LCU: Versatile Trace Gas Calibration", 6th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, pp. 192, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
M
[Fischer2013] Fischer, L., V. Ruzsanyi, K. Winkler, R. Gutmann, A. Hansel, and J. Herbig, "Micro-Capillary-Column PTR-TOF", 6th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, pp. 162, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[1445] Ruzsanyi, V., L. Fischer, J. Herbig, C. Ager, and A. Amann, "Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry.", J Chromatogr A, vol. 1316, pp. 112–118, Nov, 2013.
Link: http://dx.doi.org/10.1016/j.chroma.2013.09.072
Abstract
<p>Proton-transfer-reaction time-of-flight mass-spectrometry (PTR-TOFMS) exhibits high selectivity with a resolution of around 5000m/Δm. While isobars can be separated with this resolution, discrimination of isomeric compounds is usually not possible. The coupling of a multi-capillary column (MCC) with a PTR-TOFMS overcomes these problems as demonstrated in this paper for the ketone isomers 3-heptanone and 2-methyl-3-hexanone and for different aldehydes. Moreover, fragmentation of compounds can be studied in detail which might even improve the identification. LODs for compounds tested are in the range of low ppbv and peak positions of the respective separated substances show good repeatability (RSD of the peak positions &lt;3.2%). Due to its special characteristics, such as isothermal operation, compact size, the MCC setup is suitable to be installed inside the instrument and the overall retention time for a complete spectrum is only a few minutes: this allows near real-time measurements in the optional MCC mode. In contrast to other methods that yield additional separation, such as the use of pre-cursor ions other than H3O(+), this method yields additional information without increasing complexity.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.