Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Filters: Author is Adamsen, Anders P S.  [Clear All Filters]
2010
[Feilberg2010] Feilberg, A., D. Liu, A. P. S. Adamsen, M. J. Hansen, and K. E. N. Jonassen, "Odorant emissions from intensive pig production measured by online proton-transfer-reaction mass spectrometry.", Environ Sci Technol, vol. 44, no. 15: Department of Biosystems Engineering, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark. anders.feilberg@agrsci.dk, pp. 5894–5900, Aug, 2010.
Link: http://dx.doi.org/10.1021/es100483s
Abstract
Emission of odorous compounds from intensive livestock production is a cause of nuisance in populated rural areas. Knowledge on the chemical composition of odor and temporal variations in emissions are needed in order to identify factors of importance for emission rates and select proper abatement technologies. In this work, a method based on proton-transfer-reaction mass spectrometry (PTR-MS) has been developed and tested for continuous measurements of odorant emissions from intensive pig production facilities. The method is assessed to cover all presently known important odorants from this type of animal production with adequate sensitivity and a time resolution of less than one minute. The sensitivity toward hydrogen sulfide is demonstrated to exhibit a pronounced humidity dependency, which can be included in the calibration procedure in order to achieve quantitative results for this compound. Application of the method at an experimental pig facility demonstrated strong temporal variations in emissions, including diurnal variation. Based on these first results, air exchange and animal activity are suggested to be of importance for emission rates of odorants. Highest emissions are seen for hydrogen sulfide and acetic acid, whereas key odorants are evaluated from tabulated odor threshold values to be hydrogen sulfide, methanethiol, 4-methylphenol, and butanoic acid.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.