Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 5 results
Title [ Year(Asc)]
Filters: Author is Holloway, JS  [Clear All Filters]
2011
[Warneke2011] Warneke, C., P. Veres, JS. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, FC. Fehsenfeld, M. Graus, JB. Gilman, et al., "Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results", Atmospheric Measurement Techniques Discussions, vol. 4, no. 4: Copernicus GmbH, pp. 4631–4665, 2011.
Link: http://www.atmos-meas-tech-discuss.net/4/4631/2011/amtd-4-4631-2011.html
Abstract
We present quantitative, fast time response measurements of formaldehyde (HCHO) onboard an aircraft using a Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) instrument. The HCHO measurement by PTR-MS is strongly humidity dependent and therefore airborne measurements are difficult and have not been reported. The PTR-MS instrument was run in the normal operating mode, where about 15 volatile organic compounds (VOCs) are measured together with HCHO onboard the NOAA WP-3 aircraft during the CalNex 2010 campaign in California. We compare the humidity dependence determined in the laboratory with in-flight calibrations of HCHO and calculate the HCHO mixing ratio during all flights using the results from both. The detection limit for HCHO was between 100 pptv in the dry free troposphere and 300 pptv in the humid marine boundary layer for a one second acquisition time every 17 s. The PTR-MS measurements are compared with HCHO measurements using a DOAS instrument and a Hantzsch monitor at a ground site in Pasadena. The PTR-MS agreed with both instruments within the stated uncertainties. We also compare HCHO enhancement ratios in the Los Angeles basin and in the free troposphere with literature values and find good agreement. The usefulness of the PTR-MS HCHO measurements in atmospheric observations is demonstrated by following an isolated anthropogenic plume. The photochemical production of HCHO can be observed simultaneously with production of acetaldehyde and the photochemical degradation of aromatic compounds using the PTR-MS.
2007
[Warneke2007] Warneke, C., SA. McKeen, JA. De Gouw, PD. Goldan, WC. Kuster, JS. Holloway, EJ. Williams, BM. Lerner, DD. Parrish, M. Trainer, et al., "Determination of urban volatile organic compound emission ratios and comparison with an emissions database", Journal of geophysical research, vol. 112, no. D10: American Geophysical Union, pp. D10S47, 2007.
Link: http://www.agu.org/pubs/crossref/2007/2006JD007930.shtml
Abstract
During the NEAQS-ITCT2k4 campaign in New England, anthropogenic VOCs and CO were measured downwind from New York City and Boston. The emission ratios of VOCs relative to CO and acetylene were calculated using a method in which the ratio of a VOC with acetylene is plotted versus the photochemical age. The intercept at the photochemical age of zero gives the emission ratio. The so determined emission ratios were compared to other measurement sets, including data from the same location in 2002, canister samples collected inside New York City and Boston, aircraft measurements from Los Angeles in 2002, and the average urban composition of 39 U.S. cities. All the measurements generally agree within a factor of two. The measured emission ratios also agree for most compounds within a factor of two with vehicle exhaust data indicating that a major source of VOCs in urban areas is automobiles. A comparison with an anthropogenic emission database shows less agreement. Especially large discrepancies were found for the C2-C4 alkanes and most oxygenated species. As an example, the database overestimated toluene by almost a factor of three, which caused an air quality forecast model (WRF-CHEM) using this database to overpredict the toluene mixing ratio by a factor of 2.5 as well. On the other hand, the overall reactivity of the measured species and the reactivity of the same compounds in the emission database were found to agree within 30%.
2006
[Warneke2006] Warneke, C., JA. De Gouw, A. Stohl, OR. Cooper, PD. Goldan, WC. Kuster, JS. Holloway, EJ. Williams, BM. Lerner, SA. McKeen, et al., "Biomass burning and anthropogenic sources of CO over New England in the summer 2004", Journal of geophysical research, vol. 111, no. D23: American Geophysical Union, pp. D23S15, 2006.
Link: http://www.agu.org/pubs/crossref/2006/2005JD006878.shtml
Abstract
During the summer of 2004 large wildfires were burning in Alaska and Canada, and part of the emissions were transported toward the northeast United States, where they were measured during the NEAQS-ITCT 2k4 (New England Air Quality Study–Intercontinental Transport and Chemical Transformation) study on board the NOAA WP-3 aircraft and the NOAA research vessel Ronald H. Brown. Using acetonitrile and chloroform as tracers the biomass burning and the anthropogenic fraction of the carbon monoxide (CO) enhancement are determined. As much as 30% of the measured enhancement is attributed to the forest fires in Alaska and Canada transported into the region, and 70% is attributed to the urban emissions of mainly New York and Boston. On some days the forest fire emissions were mixed down to the surface and dominated the CO enhancement. The results compare well with the FLEXPART transport model, indicating that the total emissions during the measurement campaign for biomass burning might be about 22 Tg. The total U.S. anthropogenic CO sources used in FLEXPART are 25 Tg. FLEXPART model, using the U.S. EPA NEI-99 data, overpredicts the CO mixing ratio around Boston and New York in 2004 by about 50%.
[DeGouw2006] De Gouw, JA., C. Warneke, A. Stohl, AG. Wollny, CA. Brock, OR. Cooper, JS. Holloway, M. Trainer, FC. Fehsenfeld, EL. Atlas, et al., "Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada", Journal of geophysical research, vol. 111, no. D10: American Geophysical Union, pp. D10303, 2006.
Link: http://www.agu.org/pubs/crossref/2006/2005JD006175.shtml
Abstract
The NOAA WP-3 aircraft intercepted aged forest fire plumes from Alaska and western Canada during several flights of the NEAQS-ITCT 2k4 mission in 2004. Measurements of acetonitrile (CH3CN) indicated that the air masses had been influenced by biomass burning. The locations of the plume intercepts were well described using emissions estimates and calculations with the transport model FLEXPART. The best description of the data was generally obtained when FLEXPART injected the forest fire emissions to high altitudes in the model. The observed plumes were generally drier than the surrounding air masses at the same altitude, suggesting that the fire plumes had been processed by clouds and that moisture had been removed by precipitation. Different degrees of photochemical processing of the plumes were determined from the measurements of aromatic VOCs. The removal of aromatic VOCs was slow considering the transport times estimated from the FLEXPART model. This suggests that the average OH levels were low during the transport, which may be explained by the low humidity and high concentrations of carbon monoxide and other pollutants. In contrast with previous work, no strong secondary production of acetone, methanol and acetic acid is inferred from the measurements. A clear case of removal of submicron particle volume and acetic acid due to precipitation scavenging was observed.
2003
[DeGouw2003] De Gouw, JA., C. Warneke, DD. Parrish, JS. Holloway, M. Trainer, and FC. Fehsenfeld, "Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere", Journal of geophysical research, vol. 108, no. D11: American Geophysical Union, pp. 4329, 2003.
Link: http://www.agu.org/pubs/crossref/2003/2002JD002897.shtml
Abstract
Airborne measurements of acetonitrile (CH3CN) were made off the U.S. west coast, over California, and during two transfer flights over the U.S. in April and May of 2002. Acetonitrile was strongly enhanced in the plumes from two forest fires, confirming the usefulness of the measurement as an indicator for biomass burning emissions. The emission ratios relative to CO of acetonitrile in the two plumes were slightly higher than previously reported values for fires burning in other fuel types. No significant acetonitrile release was observed in the Los Angeles basin or from other point sources (ships and a power plant). Acetonitrile concentrations were significantly reduced in the marine boundary layer indicating the presence of an ocean uptake sink. Increased loss of acetonitrile was observed close to the coast, suggesting that acetonitrile was efficiently lost by dissolving in the upwelling ocean water, or by biological processes in the surface water.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.