Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 27 results
Title [ Year(Asc)]
Filters: Author is Wisthaler, Armin  [Clear All Filters]
2016
[1792] Halliday, H. S., A. M. Thompson, A. Wisthaler, D. R. Blake, R. S. Hornbrook, T. Mikoviny, M. Müller, P. Eichler, E. C. Apel, and A. J. Hills, "Atmospheric benzene observations from oil and gas production in the Denver-Julesburg Basin in July and August 2014", Journal of Geophysical Research: Atmospheres, vol. 121, 2016.
Link: http://onlinelibrary.wiley.com/doi/10.1002/2016JD025327/abstract
Abstract
<p>High time resolution measurements of volatile organic compounds (VOCs) were collected using a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the Platteville Atmospheric Observatory (PAO) in Colorado to investigate how oil and natural gas (O&amp;NG) development impacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurements were carried out in July and August 2014 as part of NASA&#39;s &ldquo;Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality&rdquo; (DISCOVER-AQ) field campaign. The PTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontal surveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (mean benzene&thinsp;=&thinsp;0.53 ppbv, maximum benzene&thinsp;=&thinsp;29.3 ppbv), primarily at night (mean nighttime benzene&thinsp;=&thinsp;0.73 ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurements indicate that benzene originated from within the WGF, and typical source signatures detected in the canister samples implicate emissions from O&amp;NG activities rather than urban vehicular emissions as primary benzene source. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerly flow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that traffic emissions were not responsible for the observed high benzene levels. Previous measurements at the Boulder Atmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzene enhancements between the two atmospheric observatories. Fugitive emissions of benzene from O&amp;NG operations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO.</p>
[1795] Schroeder, J. R., J. H. Crawford, A. Fried, J. Walega, A. Weinheimer, A. Wisthaler, M. Müller, T. Mikoviny, G. Chen, M. Shook, et al., "Formaldehyde column density measurements as a suitable pathway to estimate near-surface ozone tendencies from space", Journal of Geophysical Research: Atmospheres, vol. 121, 2016.
Link: http://onlinelibrary.wiley.com/doi/10.1002/2016JD025419/full
Abstract
<p>In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA&#39;s Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r2&thinsp;=&thinsp;0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for &nbsp;28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (&plusmn;20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.</p>
2015
[1793] Sun, K., K. Cady-Pereira, D. J. Miller, L. Tao, M. A. Zondlo, J. B. Nowak, JA. Neuman, T. Mikoviny, M. Müller, A. Wisthaler, et al., "Validation of TES ammonia observations at the single pixel scale in the San Joaquin Valley during DISCOVER-AQ", Journal of Geophysical Research: Atmospheres, vol. 120, pp. 5140–5154, 2015.
Link: http://onlinelibrary.wiley.com/doi/10.1002/2014JD022846/full
Abstract
<p>Ammonia measurements from a vehicle-based, mobile open-path sensor and those from aircraft were compared with Tropospheric Emission Spectrometer (TES) NH3 columns at the pixel scale during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality field experiment. Spatial and temporal mismatches were reduced by having the mobile laboratory sample in the same areas as the TES footprints. To examine how large heterogeneities in the NH3 surface mixing ratios may affect validation, a detailed spatial survey was performed within a single TES footprint around the overpass time. The TES total NH3 column above a single footprint showed excellent agreement with the in situ total column constructed from surface measurements with a difference of 2% (within the combined measurement uncertainties). The comparison was then extended to a TES transect of nine footprints where aircraft data (5&ndash;80&thinsp;ppbv) were available in a narrow spatiotemporal window (&lt;10&thinsp;km, &lt;1&thinsp;h). The TES total NH3 columns above the nine footprints agreed to within 6% of the in situ total columns derived from the aircraft-based measurements. Finally, to examine how TES captures surface spatial gradients at the interpixel scale, ground-based, mobile measurements were performed directly underneath a TES transect, covering nine footprints within &plusmn;1.5&thinsp;h of the overpass. The TES total columns were strongly correlated (R2&thinsp;=&thinsp;0.82) with the median NH3 mixing ratios measured at the surface. These results provide the first in situ validation of the TES total NH3 column product, and the methodology is applicable to other satellite observations of short-lived species at the pixel scale.</p>
2013
[Kohl2013b] Kohl, I., J. Beauchamp, F. Cakar-Beck, J. Herbig, J.. Dunkl, O. Tietje, M. Tiefenthaler, C. Boesmueller, A. Wisthaler, M. Breitenlechner, et al., "First observation of a potential non-invasive breath gas biomarker for kidney function.", J Breath Res, vol. 7, no. 1: Ionimed Analytik GmbH, Eduard Bodem Gasse 3, A-6020 Innsbruck, Austria., pp. 017110, Mar, 2013.
Link: http://dx.doi.org/10.1088/1752-7155/7/1/017110
Abstract
We report on the search for low molecular weight molecules-possibly accumulated in the bloodstream and body-in the exhaled breath of uremic patients with kidney malfunction. We performed non-invasive analysis of the breath gas of 96 patients shortly before and several times after kidney transplantation using proton-transfer-reaction mass spectrometry (PTR-MS), a very sensitive technique for detecting trace amounts of volatile organic compounds. A total of 642 individual breath analyses which included at least 41 different chemical components were carried out. Correlation analysis revealed one particular breath component with a molecular mass of 114 u (unified atomic mass units) that clearly correlated with blood serum creatinine, which is the currently accepted marker for assessing the function of the kidney. In particular, daily urine production showed good correlation with the identified breath marker. An independent set of seven samples taken from three patients at the onset of dialysis and three controls with normal kidney function confirmed a significant difference in concentration between patients and controls for a compound with a molecular mass of 114.1035 u using high mass resolving proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS). A chemical composition of CHO was derived for the respective component. Fragmentation experiments on the same samples using proton-transfer-reaction triple-quadrupole tandem mass spectrometry (PTR-QqQ-MS) suggested that this breath marker is a C-ketone or a branched C-aldehyde. Non-invasive real-time monitoring of the kidney function via this breath marker could be a possible future procedure in the clinical setting.
2010
[Mikoviny2010] Mikoviny, T., L. Kaser, and A. Wisthaler, "Development and characterization of a high-temperature proton-transfer-reaction mass spectrometer (HT-PTR-MS)", Atmospheric Measurement Techniques, vol. 3, no. 3: Copernicus GmbH, pp. 537–544, 2010.
Link: http://www.atmos-meas-tech.net/3/537/2010/amt-3-537-2010.html
Abstract
We have developed a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS) in which both the ion source and the ion drift tube can be continuously operated at temperatures up to 250 °C. The instrument was characterized in a high E/N-mode (130 Td) and in a low E/N-mode (87 Td) at an operating temperature of 200 °C. Instrumental sensitivities and 2σ-detection limits were on the order of 50–110 cps/ppb and 100 ppt (1 s signal integration time), respectively. The HT-PTR-MS is primarily intended for measuring "sticky" or semi-volatile trace gases. Alternatively, it may be coupled to a particle collection/thermal desorption apparatus to measure particle-bound organics in near real-time. In view of these applications, we have measured instrumental response times for a series of reference compounds. 1/e2-response times for dimethyl sulfoxide, ammonia and monoethanolamine were in the sub-second to second regime. 1/e2-response times for levoglucosan, oxalic acid and cis-pinonic acid ranged from 8 to 370 s.
[Mielke2010] Mielke, L. H., K. A. Pratt, P. B. Shepson, S. A. McLuckey, A. Wisthaler, and A. Hansel, "Quantitative determination of biogenic volatile organic compounds in the atmosphere using proton-transfer reaction linear ion trap mass spectrometry.", Anal Chem, vol. 82, no. 19: Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA., pp. 7952–7957, Oct, 2010.
Link: http://dx.doi.org/10.1021/ac1014244
Abstract
Although oxidation of biogenic volatile organic compounds (BVOCs) plays an important role in tropospheric ozone and secondary organic aerosol production, significant uncertainties remain in our understanding of the impacts of BVOCs on ozone, aerosols, and climate. To quantify BVOCs, the proton-transfer reaction linear ion trap (PTR-LIT) mass spectrometer was previously developed. The PTR-LIT represents an improvement over more traditional techniques (including the proton-transfer reaction mass spectrometer), providing the capability to directly quantify and differentiate isomeric compounds by MS/MS analysis, with better time resolution and minimal sample handling, compared to gas chromatography techniques. Herein, we present results from the first field deployment of the PTR-LIT. During the Program for Research on Oxidants: Photochemistry, Emissions and Transport (PROPHET) summer 2008 study in northern Michigan, the PTR-LIT successfully quantified isoprene, total monoterpenes, and isomeric isoprene oxidation products methyl vinyl ketone and methacrolein at sub-parts per billion (nmol/mol) levels in a complex forest atmosphere. The utility of the fast time response of the PTR-LIT was shown by the measurement of rapid changes in isoprene, methyl vinyl ketone, and methacrolein, concurrent with changing ozone mole fractions. Overall, the PTR-LIT was shown to be a viable field instrument with the necessary sensitivity, selectivity, and time response to provide detailed measurements of BVOC mole fractions in complex atmospheric samples, at trace levels.
[Wisthaler2010] Wisthaler, A., and C. J. Weschler, "Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air.", Proc Natl Acad Sci U S A, vol. 107, no. 15: Institut fuer Ionenphysik und Angewandte Physik, Leopold-Franzens-Universitaet Innsbruck, A-6020 Innsbruck, Austria., pp. 6568–6575, Apr, 2010.
Link: http://dx.doi.org/10.1073/pnas.0904498106
Abstract
This study has used proton transfer reaction-mass spectrometry (PTR-MS) for direct air analyses of volatile products resulting from the reactions of ozone with human skin lipids. An initial series of small-scale in vitro and in vivo experiments were followed by experiments conducted with human subjects in a simulated office. The latter were conducted using realistic ozone mixing ratios (approximately 15 ppb with occupants present). Detected products included mono- and bifunctional compounds that contain carbonyl, carboxyl, or alpha-hydroxy ketone groups. Among these, three previously unreported dicarbonyls have been identified, and two previously unreported alpha-hydroxy ketones have been tentatively identified. The compounds detected in this study (excepting acetone) have been overlooked in surveys of indoor pollutants, reflecting the limitations of the analytical methods routinely used to monitor indoor air. The results are fully consistent with the Criegee mechanism for ozone reacting with squalene, the single most abundant unsaturated constituent of skin lipids, and several unsaturated fatty acid moieties in their free or esterified forms. Quantitative product analysis confirms that squalene is the major scavenger of ozone at the interface between room air and the human envelope. Reactions between ozone and human skin lipids reduce the mixing ratio of ozone in indoor air, but concomitantly increase the mixing ratios of volatile products and, presumably, skin surface concentrations of less volatile products. Some of the volatile products, especially the dicarbonyls, may be respiratory irritants. Some of the less volatile products may be skin irritants.
2008
[Mielke2008] Mielke, L. H., D. E. Erickson, S. A. McLuckey, M. Müller, A. Wisthaler, A. Hansel, and P. B. Shepson, "Development of a proton-transfer reaction-linear ion trap mass spectrometer for quantitative determination of volatile organic compounds.", Anal Chem, vol. 80, no. 21: Department of Chemistry, Purdue University, 860 Oval Drive West, Lafayette, Indiana 47907-2084, USA., pp. 8171–8177, Nov, 2008.
Link: http://dx.doi.org/10.1021/ac801328d
Abstract
Currently, proton-transfer reaction mass spectrometry (PTR-MS) allows for quantitative determination of volatile organic compounds in real time at concentrations in the low ppt range, but cannot differentiate isomers or isobaric molecules, using the conventional quadrupole mass filter. Here we pursue the application of linear quadrupole ion trap (LIT) mass spectrometry in combination with proton-transfer reaction chemical ionization to provide the advantages of specificity from MS/MS. A commercial PTR-MS platform composed of a quadrupole mass filter with the addition of end cap electrodes enabled the mass filter to operate as a linear ion trap. The rf drive electronics were adapted to enable the application of dipolar excitation to opposing rods, for collision-induced dissociation (CID) of trapped ions. This adaptation enabled ion isolation, ion activation, and mass analysis. The utility of the PTR-LIT was demonstrated by distinguishing between the isomeric isoprene oxidation pair, methyl vinyl ketone (MVK) and methacrolein (MACR). The CID voltage was adjusted to maximize the m/ z 41 to 43 fragment ratio of MACR while still maintaining adequate sensitivity. Linear calibration curves for MVK and MACR fragments at m/ z 41 and 43 were obtained with limits of detection of approximately 100 ppt, which should enable ambient measurements. Finally, the PTR-LIT method was compared to an established GC/MS method by quantifying MVK and MACR production during a smog chamber isoprene-NO x irradiation experiment.
[Araghipour2008] Araghipour, N., J. Colineau, A. Koot, W. Akkermans, J. Manuel Mor Rojas, J. Beauchamp, A. Wisthaler, T. D. Märk, G. Downey, C. Guillou, et al., "Geographical origin classification of olive oils by PTR-MS", Food Chemistry, vol. 108, no. 1: Elsevier, pp. 374–383, 2008.
Link: http://www.sciencedirect.com/science/article/pii/S0308814607010965
Abstract
The volatile compositions of 192 olive oil samples from five different European countries were investigated by PTR-MS sample headspace analysis. The mass spectra of all samples showed many masses with high abundances, indicating the complex VOC composition of olive oil. Three different PLS-DA models were fitted to the data to classify samples into ‘country’, ‘region’ and ‘district’ of origin, respectively. Correct classification rates were assessed by cross-validation. The first fitted model produced an 86% success rate in classifying the samples into their country of origin. The second model, which was fitted to the Italian oils only, also demonstrated satisfactory results, with 74% of samples successfully classified into region of origin. The third model, classifying the Italian samples into district of origin, yielded a success rate of only 52%. This lower success rate might be due to either the small class set, or to genuine similarities between olive oil VOC compositions on this tight scale.
2007
[Norman2007] Norman, M., A. Hansel, and A. Wisthaler, "O2+ as reagent ion in the PTR-MS instrument: Detection of gas-phase ammonia", International Journal of Mass Spectrometry, vol. 265, no. 2: Elsevier, pp. 382–387, 2007.
Link: http://www.sciencedirect.com/science/article/pii/S1387380607002515
Abstract
Oxygen was used as a source gas in a conventional Innsbruck PTR-MS instrument to produce O2+ ions as chemical ionization (CI) reagents instead of H3O+ ions. The use of O2+ ions as CI reagents allows for fast, highly sensitive and specific measurements of gas-phase ammonia (NH3) via the electron transfer reaction O2+ + NH3 → NH3+ + O2. The instrument was tested to be linear in the 2–2000 ppbv range. Instrument sensitivity was observed to be humidity-independent and amounted to ∼40 cps/ppbv. The instrumental background was determined by sampling NH3-free air from a heated platinum/palladium catalyst. A humidity-dependent increase of the instrumental background from 70 pptv at dry conditions to 470 pptv at humid conditions was observed. The corresponding 2σ-detection limits at 1 s signal integration time were 90 pptv for dry conditions and 230 pptv for humid conditions, respectively. The observed background may be intrinsically formed in the instrument's ion source but it may also be the result of incomplete NH3 oxidation in the catalyst used for zeroing. The reported background levels and detection limits are thus to be considered as upper limits. The 1/e response time of the instrument was in the range of 3–5 s. The PTR-MS instrument was successfully deployed in the field to monitor changes in gas-phase NH3 concentrations in the few seconds to tens of seconds time range. Laboratory intercomparison measurements between the PTR-MS instrument and a commercial NH3 analyzer (AiRRmonia) were in good agreement. The use of O2+ ions as CI reagents will significantly improve the analytical capabilities of the Innsbruck PTR-MS instrument.
[Weschler2007] Weschler, C. J., A. Wisthaler, S. Cowlin, G. Tamas, P. Strøm-Tejsen, A. T. Hodgson, H. Destaillats, J. Herrington, J. Zhang, and W. W. Nazaroff, "Ozone-initiated chemistry in an occupied simulated aircraft cabin", Environmental Science & Technology, vol. 41, no. 17: ACS Publications, pp. 6177–6184, 2007.
Link: http://pubs.acs.org/doi/abs/10.1021/es0708520
Abstract
We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions:  low air exchange (4.4 h-1), <2 ppb ozone; low air exchange, 61−64 ppb ozone; high air exchange (8.8 h-1), <2 ppb ozone; and high air exchange, 73−77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from 70 to 130 ppb at the lower air exchange rate and from 30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25−0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.
[Wisthaler2007] Wisthaler, A., P. Strøm-Tejsen, L. Fang, T. J. Arnaud, A. Hansel, T. D. Maerk, and D. P. Wyon, "PTR-MS assessment of photocatalytic and sorption-based purification of recirculated cabin air during simulated 7-h flights with high passenger density.", Environ Sci Technol, vol. 41, no. 1: Institut fuer Ionenphysik, Leopold-Franzens- Universitaet Innsbruck, A-6020 Innsbruck, Austria. armin.wisthaler@uibk.ac.at, pp. 229–234, Jan, 2007.
Link: http://pubs.acs.org/doi/abs/10.1021/es060424e
Abstract
Four different air purification conditions were established in a simulated 3-row 21-seat section of an aircraft cabin: no air purifier; a photocatalytic oxidation unit with an adsorptive prefilter; a second photocatalytic unit with an adsorptive prefilter; and a two-stage sorption-based air filter (gas-phase absorption and adsorption). The air purifiers placed in the cabin air recirculation system were commercial prototypes developed for use in aircraft cabin systems. The four conditions were established in balanced order on 4 successive days of each of 4 successive weeks during simulated 7-h flights with 17 occupants. Proton-transfer reaction mass spectrometry was used to assess organic gas-phase pollutants and the performance of each air purifier. The concentration of most organic pollutants present in aircraft cabin air was efficiently reduced by all three units. The photocatalytic units were found to incompletely oxidize ethanol released by the wet wipes commonly supplied with airline mealsto produce unacceptably high levels of acetaldehyde and formaldehyde.
[Spitaler2007] Spitaler, R., N. Araghipour, T. Mikoviny, A. Wisthaler, J. Dalla Via, and T. D. Maerk, "PTR-MS in enology: Advances in analytics and data analysis", International Journal of Mass Spectrometry, vol. 266, no. 1: Elsevier, pp. 1–7, 2007.
Link: http://www.sciencedirect.com/science/article/pii/S1387380607002266
Abstract
The present communication deals with the improvement of proton transfer reaction mass spectrometry (PTR-MS) wine headspace analyses. In contrast to previous PTR-MS investigations of wine, where wine headspace was ionized by protonated ethanol clusters, the headspace was diluted by a factor of 1:40 with N2 and ionized by H3O+ ions. This method is better suited for routine applications than the previously reported method since it is simpler, faster, and the mass spectra obtained are less complex. A test wine was mixed with ethanol and with water to yield ethanol contents ranging from 10 to 15% (v/v) and these mixtures were analyzed to assess whether any quantitative differences in the composition of volatiles were detectable. The data showed no impact of the ethanol content on the wine headspace composition. The new method was applied to eight different wine samples produced from two different grape varieties: Pinot Noir and Cabernet Sauvignon. Each variety was grown in two different locations in South Tyrol (Northern Italy) and harvested at two different dates. Quantitative (but not qualitative) differences in PTR-MS spectra between the two wine varieties were observed. Using principal component analysis of selected m/z signals differentiation between Pinot Noir and Cabernet Sauvignon samples was achievable.
2006
[Mueller2006] Müller, K., S. Haferkorn, W. Grabmer, A. Wisthaler, A. Hansel, J. Kreuzwieser, C. Cojocariu, H. Rennenberg, and H. Herrmann, "Biogenic carbonyl compounds within and above a coniferous forest in Germany", Atmospheric Environment, vol. 40: Elsevier, pp. 81–91, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S1352231006003220
Abstract
Diurnal mixing ratios of aldehydes and ketones were investigated during two joint experiments in summer months to identify biogenic contributions from coniferous forests to tropospheric chemistry. In a Norway spruce forest, the diurnal variation of carbonyl compounds was measured at 12 m (in the treetop) and at 24 m (above the canopy). The main findings of the experiment are that acetone (up to 9.1 ppbv), formaldehyde (up to 6.5 ppbv), acetaldehyde (up to 5.5 ppbv) and methyl ethyl ketone (MEK, up to 1.8 ppbv) were found in highest concentrations. For all major compounds with the exception of MEK, primary emissions are supposed. From α-pinene oxidation, pinonaldehyde was found with its peak concentrations (up to 0.15 ppbv) during the early morning hours. The diurnal variation of concentrations for most other compounds shows maximum concentrations near midday in 2,4-dinitrophenylhydrazine (DNPH) measurements but not for proton-transfer reaction mass spectrometry (PTR-MS) measurements of acetaldehyde and acetone. A clear correlation of carbonyl compound concentration to the radiation intensity and the temperature (R2=0.66) was found. However, formaldehyde did not show distinct diurnal variations. A very high correlation was observed for both heights between mixing ratios of acetaldehyde and acetone (R2=0.84), acetone and MEK (R2=0.90) as well as acetaldehyde and MEK (R2=0.88) but not for formaldehyde and the others. For the most time, the observed carbonyl compound concentrations above the canopy are higher than within the forest stand. This indicates an additional secondary formation in the atmosphere above the forest. The differences of acetone and acetaldehyde mixing ratios detected by DNPH technique and the PTR-MS could not be fully clarified by a laboratory intercomparison.
[Graus2006] Graus, M., A. Hansel, A. Wisthaler, C. Lindinger, R. Forkel, K. Hauff, M. Klauer, A. Pfichner, B. Rappenglück, D. Steigner, et al., "A relaxed-eddy-accumulation method for the measurement of isoprenoid canopy-fluxes using an online gas-chromatographic technique and PTR-MS simultaneously", Atmospheric Environment, vol. 40: Elsevier, pp. 43–54, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S1352231006003190
Abstract
A relaxed-eddy-accumulation set-up using an online gas-chromatographic technique and proton-transfer-reaction mass spectrometry was applied to determine isoprenoid fluxes above a Norway spruce forest in July 2001/2002. The system was quality assured and its suitability for determination of canopy fluxes of isoprenoids was demonstrated. Flux measurements of oxygenated hydrocarbons failed the data quality check due to artefacts presumably arising from line and ozone-scrubber effects. Observations of turbulent fluxes of isoprenoids during the two field experiments show good agreements with primary flux data derived from enclosure measurements and modelling results using a canopy-chemistry emission model (CACHE).
2005
[DAnna2005] D'Anna, B., A. Wisthaler, Øyvind. Andreasen, A. Hansel, J. Hjorth, N. R. Jensen, C. J. Nielsen, Y. Stenstrøm, and J. Viidanoja, "Atmospheric chemistry of C3-C6 cycloalkanecarbaldehydes.", J Phys Chem A, vol. 109, no. 23: Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway. barbara.danna@kjemi.uio.no, pp. 5104–5118, Jun, 2005.
Link: http://dx.doi.org/10.1021/jp044495g
Abstract
The rate coefficients for the gas phase reaction of NO3 and OH radicals with a series of cycloalkanecarbaldehydes have been measured in purified air at 298 +/- 2 K and 760 +/- 10 Torr by the relative rate method using a static reactor equipped with long-path Fourier transform infrared (FT-IR) detection. The values obtained for the OH radical reactions (in units of 10(-11) cm3 molecule(-1) s(-1)) were the following: cyclopropanecarbaldehyde, 2.13 +/- 0.05; cyclobutanecarbaldehyde, 2.66 +/- 0.06; cyclopentanecarbaldehyde, 3.27 +/- 0.07; cyclohexanecarbaldehyde, 3.75 +/- 0.05. The values obtained for the NO3 radical reactions (in units of 10(-14) cm3 molecule(-1) s(-1)) were the following: cyclopropanecarbaldehyde, 0.61 +/- 0.04; cyclobutanecarbaldehyde, 1.99 +/- 0.06; cyclopentanecarbaldehyde, 2.55 +/- 0.10; cyclohexanecarbaldehyde, 3.19 +/- 0.12. Furthermore, the reaction products with OH radicals have been investigated using long-path FT-IR spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS). The measured carbon balances were in the range 89-97%, and the identified products cover a wide spectrum of compounds including nitroperoxycarbonyl cycloalkanes, cycloketones, cycloalkyl nitrates, multifunctional compounds containing carbonyl, hydroxy, and nitrooxy functional groups, HCOOH, HCHO, CO, and CO2.
[Jacob2005] Jacob, D. J., B. D. Field, Q. Li, D. R. Blake, J. de Gouw, C. Warneke, A. Hansel, A. Wisthaler, H. B. Singh, and A. Guenther, "Global budget of methanol: Constraints from atmospheric observations", Journal of Geophysical Research: Atmospheres (1984–2012), vol. 110, no. D8: Wiley Online Library, 2005.
Link: http://onlinelibrary.wiley.com/doi/10.1029/2004JD005172/full
Abstract
We use a global three-dimensional model simulation of atmospheric methanol to examine the consistency between observed atmospheric concentrations and current understanding of sources and sinks. Global sources in the model include 128 Tg yr−1 from plant growth, 38 Tg yr−1 from atmospheric reactions of CH3O2 with itself and other organic peroxy radicals, 23 Tg yr−1 from plant decay, 13 Tg yr−1 from biomass burning and biofuels, and 4 Tg yr−1 from vehicles and industry. The plant growth source is a factor of 3 higher for young than from mature leaves. The atmospheric lifetime of methanol in the model is 7 days; gas-phase oxidation by OH accounts for 63% of the global sink, dry deposition to land 26%, wet deposition 6%, uptake by the ocean 5%, and aqueous-phase oxidation in clouds less than 1%. The resulting simulation of atmospheric concentrations is generally unbiased in the Northern Hemisphere and reproduces the observed correlations of methanol with acetone, HCN, and CO in Asian outflow. Accounting for decreasing emission from leaves as they age is necessary to reproduce the observed seasonal variation of methanol concentrations at northern midlatitudes. The main model discrepancy is over the South Pacific, where simulated concentrations are a factor of 2 too low. Atmospheric production from the CH3O2 self-reaction is the dominant model source in this region. A factor of 2 increase in this source (to 50–100 Tg yr−1) would largely correct the discrepancy and appears consistent with independent constraints on CH3O2 concentrations. Our resulting best estimate of the global source of methanol is 240 Tg yr−1. More observations of methanol concentrations and fluxes are needed over tropical continents. Better knowledge is needed of CH3O2 concentrations in the remote troposphere and of the underlying organic chemistry.
[Beauchamp2005] Beauchamp, J., A. Wisthaler, A. Hansel, E. Kleist, M. Miebach, ÜLO. NIINEMETS, U. Schurr, and JÜRGEN. WILDT, "Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products", Plant, Cell & Environment, vol. 28, no. 10: Wiley Online Library, pp. 1334–1343, 2005.
Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01383.x/full
Abstract
Volatile organic compound (VOC) emissions from tobacco (Nicotiana tabacum L. var. Bel W3) plants exposed to ozone (O3) were investigated using proton-transfer-reaction mass-spectrometry (PTR-MS) and gas chromatography mass-spectrometry (GC-MS) to find a quantitative reference for plants’ responses to O3 stress. O3 exposures to illuminated plants induced post-exposure VOC emission bursts. The lag time for the onset of volatile C6 emissions produced within the octadecanoid pathway was found to be inversely proportional to O3 uptake, or more precisely, to the O3 flux density into the plants. In cases of short O3 pulses of identical duration the total amount of these emitted C6 VOC was related to the O3 flux density into the plants, and not to ozone concentrations or dose–response relationships such as AOT 40 values. Approximately one C6 product was emitted per five O3 molecules taken up by the plant. A threshold flux density of O3 inducing emissions of C6 products was found to be (1.6 ± 0.7) × 10−8 mol m−2 s−1.
[Wisthaler2005] Wisthaler, A., G. Tamás, D. P. Wyon, P. Strøm-Tejsen, D. Space, J. Beauchamp, A. Hansel, T. D. Maerk, and C. J. Weschler, "Products of ozone-initiated chemistry in a simulated aircraft environment.", Environ Sci Technol, vol. 39, no. 13: International Centre for Indoor Environment and Energy, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark., pp. 4823–4832, Jul, 2005.
Link: http://pubs.acs.org/doi/abs/10.1021/es047992j
Abstract
We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only slightly, whereas the combination of soiled T-shirts and ozone increased the mixing ratio of detected pollutants to 110 ppb, with more than 20 ppb originating from squalene oxidation products (acetone, 4-oxopentanal, and 6-methyl-5-hepten-2-one). For the two conditions with ozone present, the more-abundant oxidation products included acetone/propanal (8-20 ppb), formaldehyde (8-10 ppb), nonanal (approximately 6 ppb), 4-oxopentanal (3-7 ppb), acetic acid (approximately 7 ppb), formic acid (approximately 3 ppb), and 6-methyl-5-hepten-2-one (0.5-2.5 ppb), as well as compounds tentatively identified as acrolein (0.6-1 ppb) and crotonaldehyde (0.6-0.8 ppb). The odor thresholds of certain products were exceeded. With an outdoor air exchange of 3 h(-1) and a recirculation rate of 20 h(-1), the measured ozone surface removal rate constant was 6.3 h(-1) when T-shirts were not present, compared to 11.4 h(-1) when T-shirts were present.
2004
[Boscaini2004] Boscaini, E., T. Mikoviny, A. Wisthaler, E. von Hartungen, and T. D. Märk, "Characterization of wine with PTR-MS", International Journal of Mass Spectrometry, vol. 239, no. 2: Elsevier, pp. 215–219, 2004.
Link: http://www.sciencedirect.com/science/article/pii/S1387380604003537
Abstract
A new method for measuring volatile profiles of alcoholic beverages (or other ethanol-containing analytes such as perfumes or herbs) has been developed. The method is based on proton transfer reaction mass spectrometry (PTR-MS). However, instead of hydronium ions (H3O+) protonated ethanol clusters (C2H5OH2+(C2H5OH)n = 1,2) are used as chemical ionization reagent ions. A stable reagent ion distribution is obtained by a 10-fold dilution of analyte headspace into ethanol-saturated nitrogen. Samples with different ethanol content can thus be directly compared. Characteristic mass spectral fingerprints have been obtained for four wine varieties. Principal component analysis discriminates between different wine varieties and shows specific correlations between wine variety and selected ions.
[Schnitzler2004] SCHNITZLER, JÖRG-PETER., M. Graus, J. Kreuzwieser, U. Heizmann, H. Rennenberg, A. Wisthaler, and A. Hansel, "Contribution of different carbon sources to isoprene biosynthesis in poplar leaves", Plant Physiology, vol. 135, no. 1: Am Soc Plant Biol, pp. 152–160, 2004.
Link: http://www.plantphysiol.org/content/135/1/152.short
Abstract
This study was performed to test if alternative carbon sources besides recently photosynthetically fixed CO2 are used for isoprene formation in the leaves of young poplar (Populus × canescens) trees. In a 13CO2 atmosphere under steady state conditions, only about 75% of isoprene became 13C labeled within minutes. A considerable part of the unlabeled carbon may be derived from xylem transported carbohydrates, as may be shown by feeding leaves with [U-13C]Glc. As a consequence of this treatment approximately 8% to 10% of the carbon emitted as isoprene was 13C labeled. In order to identify further carbon sources, poplar leaves were depleted of leaf internal carbon pools and the carbon pools were refilled with 13C labeled carbon by exposure to 13CO2. Results from this treatment showed that about 30% of isoprene carbon became 13C labeled, clearly suggesting that, in addition to xylem transported carbon and CO2, leaf internal carbon pools, e.g. starch, are used for isoprene formation. This use was even increased when net assimilation was reduced, for example by abscisic acid application. The data provide clear evidence of a dynamic exchange of carbon between different cellular precursors for isoprene biosynthesis, and an increasing importance of these alternative carbon pools under conditions of limited photosynthesis. Feeding [1,2-13C]Glc and [3-13C]Glc to leaves via the xylem suggested that alternative carbon sources are probably derived from cytosolic pyruvate/phosphoenolpyruvate equivalents and incorporated into isoprene according to the predicted cleavage of the 3-C position of pyruvate during the initial step of the plastidic deoxyxylulose-5-phosphate pathway.
[Hartungen2004] von Hartungen, E., A. Wisthaler, T. Mikoviny, D. Jaksch, E. Boscaini, P. J. Dunphy, and T. D. Märk, "Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids: Determination of Henry's law constants and axillary odour investigations", International Journal of Mass Spectrometry, vol. 239, no. 2: Elsevier, pp. 243–248, 2004.
Link: http://www.sciencedirect.com/science/article/pii/S1387380604003902
Abstract
Proton-transfer-reaction mass spectrometry (PTR-MS) was used as an analytical tool to measure gas-phase concentrations of short-chain fatty acids. Chemical ionisation of C2single bondC6 carboxylic acids by PTR-MS produced intense protonated molecular ions (with traces of hydrates) along with acylium ion fragments. Gas-phase concentrations were derived using the established method for calculating PTR-MS sensitivity factors. Henry's law constants of carboxylic acids for aqueous solutions at 40 °C were determined. Direct monitoring of volatile fatty acids, known to be associated with secretions from the human axilla, was performed via a specially designed transfer device situated in the axilla. Mass spectral data corresponded with the findings of a sensory assessor.
[Graus2004] Graus, M., JÖRG-PETER. SCHNITZLER, A. Hansel, C. Cojocariu, H. Rennenberg, A. Wisthaler, and J. Kreuzwieser, "Transient release of oxygenated volatile organic compounds during light-dark transitions in grey poplar leaves", Plant Physiology, vol. 135, no. 4: American Society of Plant Biologists, pp. 1967–1975, 2004.
Link: http://www.plantphysiology.org/content/135/4/1967.short
Abstract
In this study, we investigated the prompt release of acetaldehyde and other oxygenated volatile organic compounds (VOCs) from leaves of Grey poplar [Populus x canescens (Aiton) Smith] following light-dark transitions. Mass scans utilizing the extremely fast and sensitive proton transfer reaction-mass spectrometry technique revealed the following temporal pattern after light-dark transitions: hexenal was emitted first, followed by acetaldehyde and other C6-VOCs. Under anoxic conditions, acetaldehyde was the only compound released after switching off the light. This clearly indicated that hexenal and other C6-VOCs were released from the lipoxygenase reaction taking place during light-dark transitions under aerobic conditions. Experiments with enzyme inhibitors that artificially increased cytosolic pyruvate demonstrated that the acetaldehyde burst after light-dark transition could not be explained by the recently suggested pyruvate overflow mechanism. The simulation of light fleck situations in the canopy by exposing leaves to alternating light-dark and dark-light transitions or fast changes from high to low photosynthetic photon flux density showed that this process is of minor importance for acetaldehyde emission into the Earth's atmosphere.
2002
[Wisthaler2002] Wisthaler, A., A. Hansel, R. R. Dickerson, and P. J. Crutzen, "Organic trace gas measurements by PTR-MS during INDOEX 1999", Journal of geophysical research, vol. 107, no. D19: American Geophysical Union, pp. 8024, 2002.
Link: http://onlinelibrary.wiley.com/doi/10.1029/2001JD000576/abstract
Abstract
A proton-transfer-reaction mass spectrometer (PTR-MS) was used for fast-response measurements of volatile organic compounds (VOCs) onboard the NOAA research vessel Ronald H. Brown during leg 2 (4 March–23 March) of the INDOEX 1999 cruise. In this paper, we present a first overview of the distribution of acetonitrile, methanol, acetone, and acetaldehyde over a broad spatial extent of the Indian Ocean (19°N–13°S, 67°E–75°E). The prevailing atmospheric circulation during the winter monsoon transported polluted air from India and the Middle East over the Indian Ocean to meet pristine southern hemispheric air at the intertropical convergence zone (ITCZ). The chemical composition of air parcels changed according to their geographic origin, which was traced by backtrajectory analysis. The relative abundance of acetonitrile, a selective tracer for biomass burning, to that of carbon monoxide, a general tracer for incomplete combustion, reflected the signature of biomass burning or fossil fuel combustion. This indicated a strong biomass burning impact in W-India, mixed pollution sources in NE-India, and the dominance of fossil fuel combustion in the Middle East. Biomass burning impacted air was rich in methanol (0.70–1.60 ppbv), while acetone (0.80–2.40 ppbv) and acetaldehyde (0.25–0.50 ppbv) were elevated in all continental air masses. Pollution levels decreased toward the ITCZ resulting in minima for methanol, acetone, and acetaldehyde of 0.50, 0.45, and 0.12 ppbv, respectively. The observed abundances suggest that there are unidentified sources of acetone and acetaldehyde in biomass burning impacted air masses and in remote marine air.
[Kreuzwieser2002] Kreuzwieser, J., M. Graus, A. Wisthaler, A. Hansel, H. Rennenberg, and JÖRG-PETER. SCHNITZLER, "Xylem-transported glucose as an additional carbon source for leaf isoprene formation in Quercus robur", New Phytologist, vol. 156, no. 2: Wiley Online Library, pp. 171–178, 2002.
Link: http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2002.00516.x/full
Abstract
In order to test whether xylem-transported carbohydrates are a potential source for isoprene biosynthesis, [U- 13 C]-labelled α- d -glucose was fed via cut ends of stems into the xylem of Quercus robur seedlings and the incorporation of 13 C into isoprene emitted was studied. Emission of 13 C-labelled isoprene was monitored in real time by proton-transfer-reaction mass spectrometry (PTR-MS). A rapid incorporation of 13 C from xylem-fed glucose into single (mass 70) and double (mass 71) 13 C-labelled isoprene molecules was observed after a lag phase of approx. 5–10 min. This incorporation was temperature dependent and was highest (up to 13% 13 C of total carbon emitted as isoprene) at the temperature optimum of isoprene emission (40–42°C), when net assimilation was strongly reduced.   Fast dark-to-light transitions led to a strong single or double 13 C-labelling of isoprene from xylem-fed [U-13C]glucose. During a period of 10–15 min up to 86% of all isoprene molecules became single or double 13 C-labelled, resulting in a 13 C-portion of up to 27% of total carbon emitted as isoprene.   The results provide evidence that xylem-transported glucose or its degradation products can potentially be used as additional precursors for isoprene biosynthesis and that this carbon source becomes more important under conditions of limited photosynthesis.

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.