Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 6 results
Title [ Year(Asc)]
Filters: Author is Trainer, M  [Clear All Filters]
2007
[Warneke2007] Warneke, C., SA. McKeen, JA. De Gouw, PD. Goldan, WC. Kuster, JS. Holloway, EJ. Williams, BM. Lerner, DD. Parrish, M. Trainer, et al., "Determination of urban volatile organic compound emission ratios and comparison with an emissions database", Journal of geophysical research, vol. 112, no. D10: American Geophysical Union, pp. D10S47, 2007.
Link: http://www.agu.org/pubs/crossref/2007/2006JD007930.shtml
Abstract
During the NEAQS-ITCT2k4 campaign in New England, anthropogenic VOCs and CO were measured downwind from New York City and Boston. The emission ratios of VOCs relative to CO and acetylene were calculated using a method in which the ratio of a VOC with acetylene is plotted versus the photochemical age. The intercept at the photochemical age of zero gives the emission ratio. The so determined emission ratios were compared to other measurement sets, including data from the same location in 2002, canister samples collected inside New York City and Boston, aircraft measurements from Los Angeles in 2002, and the average urban composition of 39 U.S. cities. All the measurements generally agree within a factor of two. The measured emission ratios also agree for most compounds within a factor of two with vehicle exhaust data indicating that a major source of VOCs in urban areas is automobiles. A comparison with an anthropogenic emission database shows less agreement. Especially large discrepancies were found for the C2-C4 alkanes and most oxygenated species. As an example, the database overestimated toluene by almost a factor of three, which caused an air quality forecast model (WRF-CHEM) using this database to overpredict the toluene mixing ratio by a factor of 2.5 as well. On the other hand, the overall reactivity of the measured species and the reactivity of the same compounds in the emission database were found to agree within 30%.
2006
[DeGouw2006] De Gouw, JA., C. Warneke, A. Stohl, AG. Wollny, CA. Brock, OR. Cooper, JS. Holloway, M. Trainer, FC. Fehsenfeld, EL. Atlas, et al., "Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada", Journal of geophysical research, vol. 111, no. D10: American Geophysical Union, pp. D10303, 2006.
Link: http://www.agu.org/pubs/crossref/2006/2005JD006175.shtml
Abstract
The NOAA WP-3 aircraft intercepted aged forest fire plumes from Alaska and western Canada during several flights of the NEAQS-ITCT 2k4 mission in 2004. Measurements of acetonitrile (CH3CN) indicated that the air masses had been influenced by biomass burning. The locations of the plume intercepts were well described using emissions estimates and calculations with the transport model FLEXPART. The best description of the data was generally obtained when FLEXPART injected the forest fire emissions to high altitudes in the model. The observed plumes were generally drier than the surrounding air masses at the same altitude, suggesting that the fire plumes had been processed by clouds and that moisture had been removed by precipitation. Different degrees of photochemical processing of the plumes were determined from the measurements of aromatic VOCs. The removal of aromatic VOCs was slow considering the transport times estimated from the FLEXPART model. This suggests that the average OH levels were low during the transport, which may be explained by the low humidity and high concentrations of carbon monoxide and other pollutants. In contrast with previous work, no strong secondary production of acetone, methanol and acetic acid is inferred from the measurements. A clear case of removal of submicron particle volume and acetic acid due to precipitation scavenging was observed.
2004
[Cooper2004] Cooper, OR., C. Forster, D. Parrish, M. Trainer, E. Dunlea, T. Ryerson, G. Huebler, F. Fehsenfeld, D. Nicks, J. Holloway, et al., "A case study of transpacific warm conveyor belt transport: Influence of merging airstreams on trace gas import to North America", Journal of geophysical research, vol. 109, no. D23: American Geophysical Union, pp. D23S08, 2004.
Link: http://www.agu.org/pubs/crossref/2004/2003JD003624.shtml
Abstract
The warm conveyor belt (WCB), the major cloud-forming airstream of midlatitude cyclones, is the primary mechanism for rapidly transporting air pollution from one continent to another. However, relatively little has been written on WCB transport across the North Pacific Ocean. To address this important intercontinental transport route, this study describes the life cycle of a WCB associated with the export of a highly polluted air mass from Asia to North America. This event was sampled using in situ measurements from an aircraft platform flying above the North American West Coast during the 2002 Intercontinental Transport and Chemical Transformation (ITCT 2K2) experiment on 5 May. Satellite imagery, trajectory ensembles, in situ measurements, and animations are used to illustrate the formation of the WCB near eastern Asia, its entrainment of polluted air masses, its transport path across the Pacific, and its decay above the eastern North Pacific Ocean and western North America. A major finding is that a WCB can entrain air from a variety of source regions and not just the atmospheric boundary layer. We estimate that 8% of the WCB's mass originated in the stratosphere and 44% passed through the lower troposphere, of which two thirds passed through the lower troposphere above the populated regions of eastern Asia. The remaining 48% traveled entirely within the middle and upper troposphere over the previous 5.5 days. Interestingly, an estimated 18% of the WCB's mass was entrained from an upwind and decaying WCB via a newly discovered but apparently common transport mechanism. Only 9% of the WCB's mass subsequently passed through the lower troposphere of the United States, with the remainder passing over North America in the middle and upper troposphere.
2003
[DeGouw2003] De Gouw, JA., C. Warneke, DD. Parrish, JS. Holloway, M. Trainer, and FC. Fehsenfeld, "Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere", Journal of geophysical research, vol. 108, no. D11: American Geophysical Union, pp. 4329, 2003.
Link: http://www.agu.org/pubs/crossref/2003/2002JD002897.shtml
Abstract
Airborne measurements of acetonitrile (CH3CN) were made off the U.S. west coast, over California, and during two transfer flights over the U.S. in April and May of 2002. Acetonitrile was strongly enhanced in the plumes from two forest fires, confirming the usefulness of the measurement as an indicator for biomass burning emissions. The emission ratios relative to CO of acetonitrile in the two plumes were slightly higher than previously reported values for fires burning in other fuel types. No significant acetonitrile release was observed in the Los Angeles basin or from other point sources (ships and a power plant). Acetonitrile concentrations were significantly reduced in the marine boundary layer indicating the presence of an ocean uptake sink. Increased loss of acetonitrile was observed close to the coast, suggesting that acetonitrile was efficiently lost by dissolving in the upwelling ocean water, or by biological processes in the surface water.
[Wert2003] Wert, BP., M. Trainer, A. Fried, TB. Ryerson, B. Henry, W. Potter, WM. Angevine, E. Atlas, SG. Donnelly, FC. Fehsenfeld, et al., "Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000", Journal of Geophysical Research: Atmospheres (1984–2012), vol. 108, no. D3: Wiley Online Library, 2003.
Link: http://onlinelibrary.wiley.com/doi/10.1029/2002JD002502/full
Abstract
Airborne formaldehyde (CH2O) measurements were made by tunable diode laser absorption spectroscopy (TDLAS) at high time resolution (1 and 10 s) and precision (±400 and ±120 parts per trillion by volume (pptv) (2σ), respectively) during the Texas Air Quality Study (TexAQS) 2000. Measurement accuracy was corroborated by in-flight calibrations and zeros and by overflight comparison with a ground-based differential optical absorption spectroscopy (DOAS) system. Throughout the campaign, the highest levels of CH2O precursors and volatile organic compound (VOC) reactivity were measured in petrochemical plumes. Correspondingly, CH2O and ozone production was greatly enhanced in petrochemical plumes compared with plumes dominated by power plant and mobile source emissions. The photochemistry of several isolated petrochemical facility plumes was accurately modeled using three nonmethane hydrocarbons (NMHCs) (ethene (C2H4), propene (C3H6) (both anthropogenic), and isoprene (C5H8) (biogenic)) and was in accord with standard hydroxyl radical (OH)-initiated chemistry. Measurement-inferred facility emissions of ethene and propene were far larger than reported by inventories. Substantial direct CH2O emissions were not detected from petrochemical facilities. The rapid production of CH2O and ozone observed in a highly polluted plume (30+ parts per billion by volume (ppbv) CH2O and 200+ ppbv ozone) originating over Houston was well replicated by a model employing only two NMHCs, ethene and propene.
2001
[Stroud2001] Stroud, CA., JM. Roberts, PD. Goldan, WC. Kuster, PC. Murphy, EJ. Williams, D. Hereid, D. Parrish, D. Sueper, M. Trainer, et al., "Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site during the 1999 Southern Oxidants Study", Journal of Geophysical Research: Atmospheres (1984–2012), vol. 106, no. D8: Wiley Online Library, pp. 8035–8046, 2001.
Link: http://onlinelibrary.wiley.com/doi/10.1029/2000JD900628/full

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.