Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 3 results
[ Title(Desc)] Year
Filters: Author is Blake, DR  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
[Christian2004] Christian, TJ., B. Kleiss, RJ. Yokelson, R. Holzinger, PJ. Crutzen, WM. Hao, T. Shirai, and DR. Blake, "Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS/FID/ECD", Journal of geophysical research, vol. 109, no. D2: American Geophysical Union, pp. D02311, 2004.
Link: http://www.agu.org/pubs/crossref/2004/2003JD003874.shtml
Abstract
Oxygenated volatile organic compounds (OVOC) can dominate atmospheric organic chemistry, but they are difficult to measure reliably at low levels in complex mixtures. Several techniques that have been used to speciate nonmethane organic compounds (NMOC) including OVOC were codeployed/intercompared in well-mixed smoke generated by 47 fires in the U.S. Department of Agriculture Forest Service Fire Sciences Combustion Facility. The agreement between proton transfer reaction mass spectrometry (PTR-MS) and open-path Fourier transform infrared spectroscopy (OP-FTIR) was excellent for methanol (PT/FT = 1.04 ± 0.118) and good on average for phenol (0.843 ± 0.845) and acetol (∼0.81). The sum of OP-FTIR mixing ratios for acetic acid and glycolaldehyde agreed (within experimental uncertainty) with the PTR-MS mixing ratios for protonated mass 61 (PT/FT = 1.17 ± 0.34), and the sum of OP-FTIR mixing ratios for furan and isoprene agreed with the PTR-MS mixing ratios for protonated mass 69 (PT/FT = 0.783 ± 0.465). The sum of OP-FTIR mixing ratios for acetone and methylvinylether accounted for most of the PTR-MS protonated mass 59 signal (PT/FT = 1.29 ± 0.81), suggesting that one of these compounds was underestimated by OP-FTIR or that it failed to detect other compounds that could contribute at mass 59. Canister grab sampling followed by gas chromatography (GC) with mass spectrometry (MS), flame ionization detection (FID), and electron capture detection (ECD) analysis by two different groups agreed well with OP-FTIR for ethylene, acetylene, and propylene. However, these propylene levels were below those observed by PTR-MS (PT/FT = 2.33 ± 0.89). Good average agreement between PTR-MS and GC was obtained for benzene and toluene. At mixing ratios above a few parts per billion the OP-FTIR had advantages for measuring sticky compounds (e.g., ammonia and formic acid) or compounds with low proton affinity (e.g., hydrogen cyanide and formaldehyde). Even at these levels, only the PTR-MS measured acetonitrile and acetaldehyde. Below a few ppbv only the PTR-MS measured a variety of OVOC, but the possibility of fragmentation, interference, and sampling losses must be considered.
E
[Karl2009] Karl, T., E. Apel, A. Hodzic, DD. Riemer, DR. Blake, and C. Wiedinmyer, "Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity", Atmospheric Chemistry and Physics, vol. 9, no. 1: Copernicus GmbH, pp. 271–285, 2009.
Link: http://www.atmos-chem-phys.net/9/271/2009/acp-9-271-2009.html
Abstract
Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g) including the International airport (e.g. 3–5 g/g) and a mean flux (concentration) ratio of 3.2±0.5 g/g (3.9±0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH3CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%).
O
[DeGouw2011] De Gouw, JA., AM. Middlebrook, C. Warneke, R. Ahmadov, EL. Atlas, R. Bahreini, DR. Blake, CA. Brock, J. Brioude, DW. Fahey, et al., "Organic aerosol formation downwind from the Deepwater Horizon oil spill", Science, vol. 331, no. 6022: American Association for the Advancement of Science, pp. 1295–1299, 2011.
Link: http://www.sciencemag.org/content/331/6022/1295.short
Abstract
A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.