Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 8 results
Title [ Year(Desc)]
Filters: Author is Crutzen, PJ  [Clear All Filters]
2000
[Holzinger2000] Holzinger, R., L. Sandoval-Soto, S. Rottenberger, PJ. Crutzen, J. Kesselmeier, and , "Emissions of volatile organic compounds from Quercus ilex L. measured by proton transfer reaction mass spectrometry under different environmental conditions", Journal of Geophysical Research, vol. 105, no. D16, pp. 20573–20579, 2000.
Link: http://www.agu.org/journals/jd/jd0016/2000JD900296/pdf/2000JD900296.pdf
[Crutzen2000] Crutzen, PJ., J. Williams, U. Poeschl, P. Hoor, H. Fischer, C. Warneke, R. Holzinger, A. Hansel, W. Lindinger, B. Scheeren, et al., "High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam", Atmospheric environment, vol. 34, no. 8: Elsevier, pp. 1161–1165, 2000.
Link: http://www.sciencedirect.com/science/article/pii/S1352231099004823
Abstract
Tropical forests with emissions greater than 1015 g C of reactive hydrocarbons per year strongly affect atmospheric chemistry. Here we report aircraft-borne measurements of organics during March 1998 in Surinam, a largely unpolluted region which is optimally located to study chemical processes induced by tropical forest emissions. Isoprene and its degradation products methylvinyl ketone (MVK) and methacrolein (MACR) and possibly isoprene hydroperoxides (ISOHP), were measured in the nmol mol−1 volume mixing ratio (VMR) range, consistent with estimated emissions and model calculations. In addition, high VMRs of some non-isoprene-derived organics were measured, such as acetone (≈2–4 nmol mol1 up to 12 km altitude), an important source of HO and HO2 in the upper troposphere. Moreover, several masses were measured at significant mixing ratios which could not be identified by reference to previous field measurements or gas-phase isoprene chemistry. High VMRs, almost 0.4 nmol mol−1, were also recorded for a compound which is most likely dimethyl sulphide (DMS). If so, boundary layer loss of HO by reactions with hydrocarbons and their oxidation products strongly prolongs the lifetime of DMS, allowing its transport deep into the Amazon forest south of the intertropical convergence zone (ITCZ). We postulate greater sulphate production and deposition north than south of the (ITCZ) with possible consequences for cloud and ecosystem properties.
2001
[Williams2001] Williams, J., U. Poeschl, PJ. Crutzen, A. Hansel, R. Holzinger, C. Warneke, W. Lindinger, and J. Lelieveld, "An atmospheric chemistry interpretation of mass scans obtained from a proton transfer mass spectrometer flown over the tropical rainforest of Surinam", Journal of atmospheric chemistry, vol. 38, no. 2: Springer, pp. 133–166, 2001.
Link: http://www.springerlink.com/index/v26n6440307112k1.pdf
[Poeschl2001] Pöschl, U., J. Williams, P. Hoor, H. Fischer, PJ. Crutzen, C. Warneke, R. Holzinger, A. Hansel, A. Jordan, W. Lindinger, et al., "High acetone concentrations throughout the 0–12 km altitude range over the tropical rainforest in Surinam", Journal of atmospheric chemistry, vol. 38, no. 2: Springer, pp. 115–132, 2001.
Link: http://link.springer.com/article/10.1023/A:1006370600615
[Lelieveld2001] J Lelieveld, others., PJ. Crutzen, V. Ramanathan, MO. Andreae, CAM. Brenninkmeijer, T. Campos, GR. Cass, RR. Dickerson, H. Fischer, JA. De Gouw, et al., "The Indian Ocean experiment: widespread air pollution from South and Southeast Asia", Science, vol. 291, no. 5506: American Association for the Advancement of Science, pp. 1031–1036, 2001.
Link: http://www.sciencemag.org/content/291/5506/1031.short
Abstract
The Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution levels were observed over the entire northern Indian Ocean toward the Intertropical Convergence Zone at about 6°S. We show that agricultural burning and especially biofuel use enhance carbon monoxide concentrations. Fossil fuel combustion and biomass burning cause a high aerosol loading. The growing pollution in this region gives rise to extensive air quality degradation with local, regional, and global implications, including a reduction of the oxidizing power of the atmosphere.
[Warneke2001a] Warneke, C., R. Holzinger, A. Hansel, A. Jordan, W. Lindinger, U. Poeschl, J. Williams, P. Hoor, H. Fischer, PJ. Crutzen, et al., "Isoprene and its oxidation products methyl vinyl ketone, methacrolein, and isoprene related peroxides measured online over the tropical rain forest of Surinam in March 1998", Journal of Atmospheric Chemistry, vol. 38, no. 2: Springer, pp. 167–185, 2001.
Link: http://www.springerlink.com/index/u14w8w3187r33ur2.pdf
2003
[Christian2003] Christian, TJ., B. Kleiss, RJ. Yokelson, R. Holzinger, PJ. Crutzen, WM. Hao, BH. Saharjo, and DE. Ward, "Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels", J. Geophys. Res, vol. 108, no. 4719, pp. 1–4719, 2003.
Link: http://www.agu.org/pubs/crossref/2003/2003JD003704.shtml
Abstract
Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH4, NH3, HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21–34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.
2004
[Christian2004] Christian, TJ., B. Kleiss, RJ. Yokelson, R. Holzinger, PJ. Crutzen, WM. Hao, T. Shirai, and DR. Blake, "Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS/FID/ECD", Journal of geophysical research, vol. 109, no. D2: American Geophysical Union, pp. D02311, 2004.
Link: http://www.agu.org/pubs/crossref/2004/2003JD003874.shtml
Abstract
Oxygenated volatile organic compounds (OVOC) can dominate atmospheric organic chemistry, but they are difficult to measure reliably at low levels in complex mixtures. Several techniques that have been used to speciate nonmethane organic compounds (NMOC) including OVOC were codeployed/intercompared in well-mixed smoke generated by 47 fires in the U.S. Department of Agriculture Forest Service Fire Sciences Combustion Facility. The agreement between proton transfer reaction mass spectrometry (PTR-MS) and open-path Fourier transform infrared spectroscopy (OP-FTIR) was excellent for methanol (PT/FT = 1.04 ± 0.118) and good on average for phenol (0.843 ± 0.845) and acetol (∼0.81). The sum of OP-FTIR mixing ratios for acetic acid and glycolaldehyde agreed (within experimental uncertainty) with the PTR-MS mixing ratios for protonated mass 61 (PT/FT = 1.17 ± 0.34), and the sum of OP-FTIR mixing ratios for furan and isoprene agreed with the PTR-MS mixing ratios for protonated mass 69 (PT/FT = 0.783 ± 0.465). The sum of OP-FTIR mixing ratios for acetone and methylvinylether accounted for most of the PTR-MS protonated mass 59 signal (PT/FT = 1.29 ± 0.81), suggesting that one of these compounds was underestimated by OP-FTIR or that it failed to detect other compounds that could contribute at mass 59. Canister grab sampling followed by gas chromatography (GC) with mass spectrometry (MS), flame ionization detection (FID), and electron capture detection (ECD) analysis by two different groups agreed well with OP-FTIR for ethylene, acetylene, and propylene. However, these propylene levels were below those observed by PTR-MS (PT/FT = 2.33 ± 0.89). Good average agreement between PTR-MS and GC was obtained for benzene and toluene. At mixing ratios above a few parts per billion the OP-FTIR had advantages for measuring sticky compounds (e.g., ammonia and formic acid) or compounds with low proton affinity (e.g., hydrogen cyanide and formaldehyde). Even at these levels, only the PTR-MS measured acetonitrile and acetaldehyde. Below a few ppbv only the PTR-MS measured a variety of OVOC, but the possibility of fragmentation, interference, and sampling losses must be considered.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.