Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 15 results
[ Title(Desc)] Year
Filters: Author is Karl, Thomas  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
[Warneke1999] Warneke, C., T. Karl, H. Judmaier, A. Hansel, A. Jordan, W. Lindinger, and P. J. Crutzen, "Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: Significance for atmospheric HOx chemistry", Global Biogeochem. Cycles, vol. 13, no. 1, pp. 9–17, 1999.
Link: http://onlinelibrary.wiley.com/doi/10.1029/98GB02428/full
D
[Karl2003] Karl, T., C. Yeretzian, A. Jordan, and W. Lindinger, "Dynamic measurements of partition coefficients using proton-transfer-reaction mass spectrometry (PTR–MS)", International Journal of Mass Spectrometry, vol. 223: Elsevier, pp. 383–395, 2003.
Link: http://www.sciencedirect.com/science/article/pii/S1387380602009272
Abstract
Liquid–gas partition coefficients (HLC) of volatile organic compounds (VOCs) in water–air systems are determined using a novel dynamic approach by coupling a stripping cell directly to a proton-transfer-reaction mass spectrometer (PTR–MS). Two complementary set-ups are evaluated, one suited for determining HLCs of highly volatile compounds (<10 M/atm), the second adapted for medium to low volatile compounds (∼10–1000 M/atm). We validated the method using 2-butanone, investigated the temperature dependence of various HLCs and applied the stripping technique to a series of VOCs. Compared to alternative state-of-the-art techniques the present approach has the advantage of being simple, fast and less prone to artefacts. Furthermore, it allows to quantify volatile compounds in the headspace without calibration or addition of standards.
E
[1760] Seco, R., T. Karl, A. Guenther, K. P. Hosman, S. G. Pallardy, L. Gu, C. Geron, P. Harley, and S. Kim, "Ecosystem-scale volatile organic compound fluxes duringᅡᅠan extreme drought in a broadleaf temperate forestᅡᅠof the Missouri Ozarks (central USA)", Global Change Biology, vol. 21, pp. 3657–3674, Jul, 2015.
Link: http://dx.doi.org/10.1111/gcb.12980
Abstract
<p>Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere-atmosphere-climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m(-2) h(-1) at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7-17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The meganv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought events.</p>
[Karl2001a] Karl, T., A. Guenther, A. Jordan, R. Fall, and W. Lindinger, "Eddy covariance measurement of biogenic oxygenated VOC emissions from hay harvesting", Atmospheric Environment, vol. 35, no. 3: Elsevier, pp. 491–495, 2001.
Link: http://www.sciencedirect.com/science/article/pii/S1352231000004052
Abstract
Biogenic oxygenated volatile organic compound (VOC) fluxes have been directly measured by eddy covariance using the combination of a fast response, real-time \{VOC\} sensor and an acoustic anemometer. \{VOC\} detection is based on proton-transfer reaction mass spectrometry which has currently a response time of ca. 0.8&#xa0;s and the system is suitable for making nearly unattended, long-term and continuous measurements of \{VOC\} fluxes. The eddy covariance system has a detection limit, for most VOCs, of less than 0.1&#xa0;mg&#xa0;m−2&#xa0;h−1. The system was field tested above a hayfield near St. Johann, Austria where cut and drying grasses released a variety of VOCs. High fluxes were observed for about 2 days after cutting and were dominated by methanol (1–8.4&#xa0;mg&#xa0;m−2&#xa0;h−1), acetaldehyde (0.5–3&#xa0;mg&#xa0;m−2&#xa0;h−1), hexenals (0.1–1.5&#xa0;mg&#xa0;m−2&#xa0;h−1) and acetone (0.1–1.5&#xa0;mg&#xa0;m−2&#xa0;h−1). The eddy covariance measurements generally agreed with flux estimates based on enclosure measurements and surface layer gradients. The sensitivity and selectivity of the system make it suitable for quantifying the fluxes of the dominant biogenic \{VOCs\} from a variety of landscapes and sources.
[Karl2004] Karl, T., M. Potosnak, A. Guenther, D. Clark, J. Walker, J. D. Herrick, and C. Geron, "Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation", Journal of geophysical research, vol. 109, no. D18: American Geophysical Union, pp. D18306, 2004.
Link: http://www.agu.org/pubs/crossref/2004/2004JD004738.shtml
Abstract
Disjunct eddy covariance in conjunction with continuous in-canopy gradient measurements allowed for the first time to quantify the fine-scale source and sink distribution of some of the most abundant biogenic (isoprene, monoterpenes, methanol, acetaldehyde, and acetone) and photooxidized (MVK+MAC, acetone, acetaldehyde, acetic, and formic acid) VOCs in an old growth tropical rain forest. Our measurements revealed substantial isoprene emissions (up to 2.50 mg m−2 h−1) and light-dependent monoterpene emissions (up to 0.33 mg m−2 h−1) at the peak of the dry season (April and May 2003). Oxygenated species such as methanol, acetone, and acetaldehyde were typically emitted during daytime with net fluxes up to 0.50, 0.36, and 0.20 mg m−2 h−1, respectively. When generalized for tropical rain forests, these fluxes would add up to a total emission of 36, 16, 19, 106, and 7.2 Tg/yr for methanol, acetaldehyde, acetone, isoprene, and monoterpenes, respectively. During nighttime we observed strong sinks for oxygenated and nitrogen-containing compounds such as methanol, acetone, acetaldehyde, MVK+MAC, and acetonitrile with deposition velocities close to the aerodynamic limit. This suggests that the canopy resistance (Rc) is very small and not the rate-limiting step for the nighttime deposition of many VOCs. Our measured mean dry deposition velocities of methanol, acetone, acetaldehyde, MVK+MAC, and acetonitrile were a factor 10–20 higher than estimated from traditional deposition models. If our measurements are generalized, this could have important implications for the redistribution of VOCs in atmospheric chemistry models. Our observations indicate that the current understanding of reactive carbon exchange can only be seen as a first-order approximation.
H
[Karl2001] Karl, T., P. Prazeller, D. Mayr, A. Jordan, J. Rieder, R. Fall, and W. Lindinger, "Human breath isoprene and its relation to blood cholesterol levels: new measurements and modeling", Journal of Applied Physiology, vol. 91, no. 2, pp. 762-770, 2001.
Link: http://jap.physiology.org/content/91/2/762.abstract
Abstract
Numerous publications have described measurements of breath isoprene in humans, and there has been a hope that breath isoprene analyses could be a noninvasive diagnostic tool to assess blood cholesterol levels or cholesterol synthesis rate. However, significant analytic problems in breath isoprene analysis and variability in isoprene levels with age, exercise, diet, etc., have limited the usefulness of these measurements. Here, we have applied proton transfer reaction-mass spectrometry to this problem, allowing on-line detection of breath isoprene. We show that breath isoprene concentration increases within a few seconds after exercise is started as a result of a rapid increase in heart rate and then reaches a lower steady state when breath rate stabilizes. Additional experiments demonstrated that increases in heart rate associated with standing after reclining or sleeping are associated with increased breath isoprene concentrations. An isoprene gas-exchange model was developed and shows excellent fit to breath isoprene levels measured during exercise. In a preliminary experiment, we demonstrated that atorvastatin therapy leads to a decrease in serum cholesterol and low-density-lipoprotein levels and a parallel decrease in breath isoprene levels. This work suggests that there is constant endogenous production of isoprene during the day and night and reaffirms the possibility that breath isoprene can be a noninvasive marker of cholesterologenesis if care is taken to measure breath isoprene under standard conditions at constant heart rate.
L
[Kim2009] Kim, S., T. Karl, I. Herdlinger, D. Helmig, R. Rasmussen, R. Daly, and A. Guenther, "Laboratory and Field Measurements of Sesquiterpenes by PTRMS", CONFERENCE SERIES, pp. 116, 2009.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_4.pdf
Q
[Cappellin2012a] Cappellin, L., T. Karl, M. Probst, O. Ismailova, P. M. Winkler, C. Soukoulis, E. Aprea, T. D. Maerk, F. Gasperi, and F. Biasioli, "On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry.", Environ Sci Technol, vol. 46, no. 4: IASMA Research and Innovation Centre, Fondazione Edmund Mach, Food Quality and Nutrition Area, Via E. Mach, 1, 38010, S. Michele a/A, Italy., pp. 2283–2290, Feb, 2012.
Link: http://dx.doi.org/10.1021/es203985t
Abstract
Proton transfer reaction - mass spectrometry (PTR-MS) has become a reference technique in environmental science allowing for VOC monitoring with low detection limits. The recent introduction of time-of-flight mass analyzer (PTR-ToF-MS) opens new horizons in terms of mass resolution, acquisition time, and mass range. A standard procedure to perform quantitative VOC measurements with PTR-ToF-MS is to calibrate the instrument using a standard gas. However, given the number of compounds that can be simultaneously monitored by PTR-ToF-MS, such a procedure could become impractical, especially when standards are not readily available. In the present work we show that, under particular conditions, VOC concentration determinations based only on theoretical predictions yield good accuracy. We investigate a range of humidity and operating conditions and show that theoretical VOC concentration estimations are accurate when the effect of water cluster ions is negligible. We also show that PTR-ToF-MS can successfully be used to estimate reaction rate coefficients between H(3)O(+) and VOC at PTR-MS working conditions and find good agreement with the corresponding nonthermal theoretical predictions. We provide a tabulation of theoretical rate coefficients for a number of relevant volatile organic compounds at various energetic conditions and test the approach in a laboratory study investigating the oxidation of alpha-pinene.
S
[Gouw2003] de Gouw, J., C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, and R. Fall, "Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry", International Journal of Mass Spectrometry, vol. 223: Elsevier, pp. 365–382, 2003.
Link: http://www.sciencedirect.com/science/article/pii/S1387380602009260
T
[Karl2003b] Karl, T., A. Hansel, T. Märk, W. Lindinger, and D. Hoffmann, "Trace gas monitoring at the Mauna Loa Baseline observatory using proton-transfer reaction mass spectrometry", International Journal of Mass Spectrometry, vol. 223: Elsevier, pp. 527–538, 2003.
Link: http://www.sciencedirect.com/science/article/pii/S1387380602008746
Abstract
Real time monitoring of volatile organic compounds (VOCs) using a Proton-Transfer Reaction Mass Spectrometer was performed at the Mauna Loa Baseline Station (19.54N, 155.58W) in March/April 2001 (March 23, 2001–April 17, 2001). Mixing ratios for methanol, acetone, acetonitrile, isoprene and methyl vinyl ketone (MVK) plus methacrolein (MACR) ranged between 0.2 and 1.8, 0.2 and 1, 0.07 and 0.2, <0.02 and 0.3, and <0.02 and 0.5 ppbv, respectively. Biomass burning plumes transported from South-East Asia and the Indian Subcontinent across the Pacific influenced part of the measurement campaign. ΔAcetonitrile/ΔCO and Δacetone/Δacetonitrile ratios in these cases were 1.5×10−3 to 2.5×10−3 and 2–5 ppbv/ppbv, respectively. Overall Asian outflow events were not as frequent during Spring 2001 as in previous years. Methanol did not show significant correlation with CO, acetonitrile, and acetone. The abundance of acetone and CO seemed to be influenced but not dominated by biomass burning and domestic biofuel emissions.
[1488] Karl, T., A. Guenther, R. J. Yokelson, J. Greenberg, M. Potosnak, D. R. Blake, and P. Artaxo, "The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia", Journal of Geophysical Research: Atmospheres, vol. 112, pp. n/a–n/a, 2007.
Link: http://dx.doi.org/10.1029/2007JD008539
Abstract
<p>Airborne and ground-based mixing ratio and flux measurements using eddy covariance (EC) and for the first time the mixed layer gradient (MLG) and mixed layer variance (MLV) techniques are used to assess the impact of isoprene and monoterpene emissions on atmospheric chemistry in the Amazon basin. Average noon isoprene (7.8 &plusmn; 2.3 mg/m2/h) and monoterpene fluxes (1.2 &plusmn; 0.5 mg/m2/h) compared well between ground and airborne measurements and are higher than fluxes estimated in this region during other seasons. The biogenic emission model, Model of Emissions of Gases and Aerosols from Nature (MEGAN), estimates fluxes that are within the model and measurement uncertainty and can describe the large observed variations associated with land-use change in the region north-west of Manaus. Isoprene and monoterpenes accounted for &sim;75% of the total OH reactivity in this region and are important volatile organic compounds (VOCs) for modeling atmospheric chemistry in Amazonia. The presence of fair weather clouds (cumulus humilis) had an important impact on the vertical distribution and chemistry of VOCs through the planetary boundary layer (PBL), the cloud layer, and the free troposphere (FT). Entrainment velocities between 10:00 and 11:30 local time (LT) are calculated to be on the order of 8&ndash;10 cm/s. The ratio of methyl-vinyl-ketone (MVK) and methacrolein (MAC) (unique oxidation products of isoprene chemistry) with respect to isoprene showed a pronounced increase in the cloud layer due to entrainment and an increased oxidative capacity in broken cloud decks. A decrease of the ratio in the lower free troposphere suggests cloud venting through activated clouds. OH modeled in the planetary boundary layer using a photochemical box model is much lower than OH calculated from a mixed layer budget approach. An ambient reactive sesquiterpene mixing ratio of 1% of isoprene would be sufficient to explain most of this discrepancy. Increased OH production due to increased photolysis in the cloud layer balances the low OH values modeled for the planetary boundary layer. The intensity of segregation (Is) of isoprene and OH, defined as a relative reduction of the reaction rate constant due to incomplete mixing, is found to be significant: up to 39 &plusmn; 7% in the &sim;800-m-deep cloud layer. The effective reaction rate between isoprene and OH can therefore vary significantly in certain parts of the lower atmosphere.</p>
U
[Karl2003a] Karl, T., T. Jobson, W. C. Kuster, E. Williams, J. Stutz, R. Shetter, S. R. Hall, P. Goldan, F. Fehsenfeld, and W. Lindinger, "Use of proton-transfer-reaction mass spectrometry to characterize volatile organic compound sources at the La Porte super site during the Texas Air Quality Study 2000", Journal of geophysical research, vol. 108, no. D16: American Geophysical Union, pp. 4508, 2003.
Link: http://www.agu.org/pubs/crossref/2003/2002JD003333.shtml
Abstract
Proton-transfer-reaction mass spectrometry (PTR-MS) was deployed for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Overall, 28 ions dominated the PTR-MS mass spectra and were assigned as anthropogenic aromatics (e.g., benzene, toluene, xylenes) and hydrocarbons (propene, isoprene), oxygenated compounds (e.g., formaldehyde, acetaldehyde, acetone, methanol, C7 carbonyls), and three nitrogen-containing compounds (e.g., HCN, acetonitrile and acrylonitrile). Biogenic VOCs were minor components at this site. Propene was the most abundant lightweight hydrocarbon detected by this technique with concentrations up to 100+ nmol mol−1, and was highly correlated with its oxidation products, formaldehyde (up to ∼40 nmol mol−1) and acetaldehyde (up to ∼80 nmol/mol), with typical ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained data set helped in identifying different anthropogenic sources (e.g., industrial from urban emissions) and testing current emission inventories. A comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by “soft” chemical ionization using proton-transfer via H3O+. The method was especially valuable in monitoring rapidly changing VOC plumes which passed over the site, and when coupled with meteorological data it was possible to identify likely sources.
V
[Karl2001b] Karl, T., P. J. Crutzen, M. Mandl, M. Staudinger, A. Guenther, A. Jordan, R. Fall, and W. Lindinger, "Variability-lifetime relationship of VOCs observed at the Sonnblick Observatory 1999�Estimation of HO-densities", Atmospheric Environment, vol. 35, no. 31: Elsevier, pp. 5287–5300, 2001.
Link: http://www.sciencedirect.com/science/article/pii/S1352231001003417
Abstract
An extensive dataset of VOC measurements was collected at the Sonnblick Observatory, Austria (3106 m) in Fall/Winter 1999/2000, showing high mixing ratios of anthropogenic and biogenic VOCs at this high altitude site due to upward mixing of air masses (Geophys. Res. Lett. 2F (2001) 507). Here we give an interpretation of proton-transfer-reaction (PTR-MS) mass scans obtained in November 1999 based on fragmentation data, GC-PTR-MS analysis and the variability-lifetime relationship, described by the power law, σ(ln(x))=Aτ−b. The variability-lifetime plot of anthropogenic VOCs gave a proportionality factor A of 1.40 and a,b exponent (sink term) of 0.44 and allowed an estimate of average HO-densities on the order of (1.5±0.4)×105 molecules cm−3. Additionally we were able to indirectly determine a diurnal HO-profile with peak values of (1.3±0.5)×106 molecules cm−3 around midday. HO-reaction rate coefficients for higher aldehydes (heptanal to nonanal) were estimated due to photochemical losses during a stagnant air episode (27 November) and from the variability-lifetime relationship. Combining long term PTR-MS analysis of VOCs and the variability-lifetime method provides a valuable tool for assessing the dominant cause of the variability in VOC concentrations. This information is essential in understanding the sources and photochemical processing of VOCs detected in ambient air at field measurement sites.
[Fall1999] Fall, R., T. Karl, A. Hansel, A. Jordan, and W. Lindinger, "Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry", Journal of Geophysical Research, vol. 104, no. D13: American Geophysical Union, pp. 15963–15, 1999.
Link: http://www.agu.org/pubs/crossref/1999/1999JD900144.shtml
Abstract
Volatile organic compounds (VOCs) released from vegetation, including wound-induced VOCs, can have important effects on atmospheric chemistry. The analytical methods for measuring wound-induced VOCs, especially the hexenal family of VOCs (hexenals, hexenols, and hexenyl esters), are complicated by their chemical instability and the transient nature of their formation after leaf and stem wounding. Here we demonstrate that formation and emission of hexenal family compounds can be monitored on-line using proton-transfer-reaction mass spectrometry (PTR-MS), avoiding the need for preconcentration or chromatography. These measurements allow direct analysis of the rapid emission of the parent compound, (Z)-3-hexenal, within 1–2 s of wounding of aspen leaves and then its disappearance and the appearance of its metabolites including (E)-2-hexenal, hexenols, and hexenyl acetates. Similar results were seen in wounded beech leaves and clover. The emission of hexenal family compounds was proportional to the extent of wounding, was not dependent on light, occurred in attached or detached leaves, and was greatly enhanced as detached leaves dried out. Emission of (Z)-3-hexenal from detached drying aspen leaves averaged 500 μg C g−1 (dry leaf weight). Leaf wound compounds were not emitted in a nitrogen atmosphere but were released within seconds of reintroduction of oxygen; this indicates that there are not large pools of hexenyl compounds in leaves. The PTR-MS method also allows the simultaneous detection of less abundant hexanal family VOCs including hexanal, hexanol, and hexyl acetate and VOCs formed in the light (isoprene) or during anoxia (acetaldehyde). PTR-MS may be a useful tool for the analysis of VOC emissions resulting from grazing, herbivory, and other physical damage to vegetation, from harvesting of crops, and from senescing leaves.
W
[1510] Jardine, K. J., R. K. Monson, L. Abrell, S. R. Saleska, A. Arneth, A. Jardine, Fᅢᄃoise. Yoko Ishida, A. Maria Yane Serrano, P. Artaxo, T. Karl, et al., "Within-plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein", Glob Change Biol, vol. 18, pp. 973–984, Mar, 2012.
Link: http://nature.berkeley.edu/ahg/pubs/Jardine et al. 2012 GCB published.pdf
Abstract
<p>Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress-induced accumulation of reactive oxygen species (ROS), but the products of isoprene-ROS reactions in plants have not been detected. Using pyruvate-2-13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biota&ndash;chemistry&ndash;climate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.