Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 47 results
Title [ Year(Asc)]
Filters: Author is Hansel, Armin  [Clear All Filters]
2013
[Kohl2013b] Kohl, I., J. Beauchamp, F. Cakar-Beck, J. Herbig, J.. Dunkl, O. Tietje, M. Tiefenthaler, C. Boesmueller, A. Wisthaler, M. Breitenlechner, et al., "First observation of a potential non-invasive breath gas biomarker for kidney function.", J Breath Res, vol. 7, no. 1: Ionimed Analytik GmbH, Eduard Bodem Gasse 3, A-6020 Innsbruck, Austria., pp. 017110, Mar, 2013.
Link: http://dx.doi.org/10.1088/1752-7155/7/1/017110
Abstract
We report on the search for low molecular weight molecules-possibly accumulated in the bloodstream and body-in the exhaled breath of uremic patients with kidney malfunction. We performed non-invasive analysis of the breath gas of 96 patients shortly before and several times after kidney transplantation using proton-transfer-reaction mass spectrometry (PTR-MS), a very sensitive technique for detecting trace amounts of volatile organic compounds. A total of 642 individual breath analyses which included at least 41 different chemical components were carried out. Correlation analysis revealed one particular breath component with a molecular mass of 114 u (unified atomic mass units) that clearly correlated with blood serum creatinine, which is the currently accepted marker for assessing the function of the kidney. In particular, daily urine production showed good correlation with the identified breath marker. An independent set of seven samples taken from three patients at the onset of dialysis and three controls with normal kidney function confirmed a significant difference in concentration between patients and controls for a compound with a molecular mass of 114.1035 u using high mass resolving proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS). A chemical composition of CHO was derived for the respective component. Fragmentation experiments on the same samples using proton-transfer-reaction triple-quadrupole tandem mass spectrometry (PTR-QqQ-MS) suggested that this breath marker is a C-ketone or a branched C-aldehyde. Non-invasive real-time monitoring of the kidney function via this breath marker could be a possible future procedure in the clinical setting.
[Fischer2013a] Fischer, L., A. Klinger, J. Herbig, K. Winkler, R. Gutmann, and A. Hansel, "The LCU: Versatile Trace Gas Calibration", 6th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, pp. 192, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Fischer2013] Fischer, L., V. Ruzsanyi, K. Winkler, R. Gutmann, A. Hansel, and J. Herbig, "Micro-Capillary-Column PTR-TOF", 6th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, pp. 162, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Fares2013] Fares, S., R. Schnitzhofer, X. Jiang, A. Guenther, A. Hansel, and F. Loreto, "Observations of diurnal to weekly variations of monoterpene-dominated fluxes of volatile organic compounds from Mediterranean forests: implications for regional modeling.", Environ Sci Technol, Sep, 2013.
Link: http://dx.doi.org/10.1021/es4022156
Abstract
The Estate of Castelporziano (Rome, Italy) hosts many ecosystems representative of Mediterranean vegetation, especially holm oak and pine forests, and dune vegetation. In this work, Basal Emission Factors (BEFs) of biogenic volatile organic compounds (BVOCs) obtained by Eddy Covariance in a field campaign using a Proton Transfer Reaction - Time of Flight - Mass Spectrometer (PTR-TOF-MS) were compared to BEFs reported in previous studies that could not measure fluxes in real-time. Globally, broadleaf forests are dominated by isoprene emissions, but these Mediterranean ecosystems are dominated by strong monoterpene emitters, as shown by the new BEFs. The original and new BEFs were used to parameterize the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1), and model outputs were compared with measured fluxes. Results showed good agreement between modelled and measured fluxes when a model was used to predict radiative transfer and energy balance across the canopy. We then evaluated whether changes in BVOC emissions can affect the chemistry of the atmosphere and climate at a regional level. MEGAN was run together with the land surface model (Community Land Model, CLM v4.0) of the Community Earth System Model (CESM v1.0). Results highlighted that tropospheric ozone concentration and air temperature predicted from the model are sensitive to the magnitude of BVOC emissions, thus demonstrating the importance of adopting the proper BEF values for model parameterization.
2012
[Luchner2012] Luchner, M., R. Gutmann, K. Bayer, J. Dunkl, A. Hansel, J. Herbig, W. Singer, F. Strobl, K. Winkler, and G. Striedner, "Implementation of proton transfer reaction-mass spectrometry (PTR-MS) for advanced bioprocess monitoring.", Biotechnol Bioeng, vol. 109, no. 12: ACIB GmbH, Muthgasse 11, A-1190 Vienna, Austria., pp. 3059–3069, Dec, 2012.
Link: http://dx.doi.org/10.1002/bit.24579
Abstract
We report on the implementation of proton transfer reaction-mass spectrometry (PTR-MS) technology for on-line monitoring of volatile organic compounds (VOCs) in the off-gas of bioreactors. The main part of the work was focused on the development of an interface between the bioreactor and an analyzer suitable for continuous sampling of VOCs emanating from the bioprocess. The permanently heated sampling line with an inert surface avoids condensation and interaction of volatiles during transfer to the PTR-MS. The interface is equipped with a sterile sinter filter unit directly connected to the bioreactor headspace, a condensate trap, and a series of valves allowing for dilution of the headspace gas, in-process calibration, and multiport operation. To assess the aptitude of the entire system, a case study was conducted comprising three identical cultivations with a recombinant E. coli strain, and the volatiles produced in the course of the experiments were monitored with the PTR-MS. The high reproducibility of the measurements proved that the established sampling interface allows for reproducible transfer of volatiles from the headspace to the PTR-MS analyzer. The set of volatile compounds monitored comprises metabolites of different pathways with diverse functions in cell physiology but also volatiles from the process matrix. The trends of individual compounds showed diverse patterns. The recorded signal levels covered a dynamic range of more than five orders of magnitude. It was possible to assign specific volatile compounds to distinctive events in the bioprocess. The presented results clearly show that PTR-MS was successfully implemented as a powerful bioprocess-monitoring tool and that access to volatiles emitted by the cells opens promising perspectives in terms of advanced process control.
[Brilli2012] Brilli, F., L. Hörtnagl, I. Bamberger, R. Schnitzhofer, T. M. Ruuskanen, A. Hansel, F. Loreto, and G. Wohlfahrt, "Qualitative and quantitative characterization of volatile organic compound emissions from cut grass.", Environ Sci Technol, vol. 46, no. 7: Ionicon Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck, Austria., pp. 3859–3865, Apr, 2012.
Link: http://dx.doi.org/10.1021/es204025y
Abstract
Mechanical wounding of plants triggers the release of a blend of reactive biogenic volatile organic compounds (BVOCs). During and after mowing and harvesting of managed grasslands, significant BVOC emissions have the potential to alter the physical and chemical properties of the atmosphere and lead to ozone and aerosol formation with consequences for regional air quality. We show that the amount and composition of BVOCs emitted per unit dry weight of plant material is comparable between laboratory enclosure measurements of artificially severed grassland plant species and in situ ecosystem-scale flux measurements above a temperate mountain grassland during and after periodic mowing and harvesting. The investigated grassland ecosystem emitted annually up to 130 mg carbon m(-2) in response to cutting and drying, the largest part being consistently represented by methanol and a blend of green leaf volatiles (GLV). In addition, we report the plant species-specific emission of furfural, terpenoid-like compounds (e.g., camphor), and sesquiterpenes from cut plant material, which may be used as tracers for the presence of given plant species in the ecosystem.
2011
[Singer2011] Singer, W., J. Herbig, R. Gutmann, K. Winkler, I. Kohl, and A. Hansel, "Applications of PTR-MS in medicine and biotechnology", American Laboratory, vol. 43, no. 7: AMER LABORATORY-LABCOMPARE 30 CONTROLS DRIVE, SHELTON, CT 06484 USA, pp. 34–37, 2011.
Link: http://www.americanlaboratory.com/913-Technical-Articles/19001-Applications-of-PTR-MS-in-Medicine-and-Biotechnology/
Abstract
Proton transfer reaction-mass spectrometry (PTR-MS) is a well-established analytical tool for the measurement of volatile organic compounds (VOCs), and offers real-time detection and quantification of VOCs at trace concentrations. This paper focuses on the measurement of VOCs in biological systems. Both microorganisms and cells, e.g., in the human body, constantly produce a large variety of volatile organic metabolites. Analyzing VOCs in exhaled human breath reveals information about the status of the body. In a similar manner, monitoring the off-gas of fermentations in the biopharmaceutical industry allows microbial activity to be gauged. Undesired compounds (those that are harmful to the human body or impurities in biotechnical processes) can also be tracked in real time using the technique.
[1587] Hörtnagl, L., I. Bamberger, M. Graus, T. M. Ruuskanen, R. Schnitzhofer, M. Müller, A. Hansel, and G. Wohlfahrt, "Biotic, abiotic and management controls on methanol exchange above a temperate mountain grassland.", J Geophys Res Biogeosci, vol. 116, Sep, 2011.
Link: http://dx.doi.org/10.1029/2011jg001641
Abstract
<p>Methanol (CH3OH) fluxes were quantified above a managed temperate mountain grassland in the Stubai Valley (Tyrol, Austria) during the growing seasons 2008 and 2009. Half-hourly methanol fluxes were calculated by means of the virtual disjunct eddy covariance (vDEC) method using 3-dimensional wind data from a sonic anemometer and methanol volume mixing ratios measured with a proton-transfer-reaction mass spectrometer (PTR-MS). During (undisturbed) mature and growing phases methanol fluxes exhibited a clear diurnal cycle with close-to-zero fluxes during nighttime and emissions, up to 10 nmol m(-2) s(-1), which followed the diurnal course of radiation and air temperature. Management events were found to represent the largest perturbations of methanol exchange at the studied grassland ecosystem: Peak emissions of 144.5 nmol m(-2) s(-1) were found during/after cutting of the meadow reflecting the wounding of the plant material and subsequent depletion of the leaf internal aqueous methanol pools. After the application of organic fertilizer, elevated methanol emissions of up to 26.7 nmol m(-2) s(-1) were observed, likely reflecting enhanced microbial activity associated with the applied manure. Simple and multiple linear regression analyses revealed air temperature and radiation as the dominant abiotic controls, jointly explaining 47 % and 70 % of the variability in half-hourly and daily methanol fluxes. In contrast to published leaf-level laboratory studies, the surface conductance and the daily change in the amount of green plant area, used as ecosystem-scale proxies for stomatal conductance and growth, respectively, were found to exert only minor biotic controls on methanol exchange.</p>
[Brilli2011] Brilli, F., T. M. Ruuskanen, R. Schnitzhofer, M. Müller, M. Breitenlechner, V. Bittner, G. Wohlfahrt, F. Loreto, and A. Hansel, "Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction "time-of-flight" mass spectrometry (PTR-TOF).", PLoS One, vol. 6, no. 5: Ionicon Analytik G.m.b.H., Innsbruck, Austria., pp. e20419, 2011.
Link: http://dx.doi.org/10.1371/journal.pone.0020419
Abstract
Proton transfer reaction-time of flight (PTR-TOF) mass spectrometry was used to improve detection of biogenic volatiles organic compounds (BVOCs) induced by leaf wounding and darkening. PTR-TOF measurements unambiguously captured the kinetic of the large emissions of green leaf volatiles (GLVs) and acetaldehyde after wounding and darkening. GLVs emission correlated with the extent of wounding, thus confirming to be an excellent indicator of mechanical damage. Transient emissions of methanol, C5 compounds and isoprene from plant species that do not emit isoprene constitutively were also detected after wounding. In the strong isoprene-emitter Populus alba, light-dependent isoprene emission was sustained and even enhanced for hours after photosynthesis inhibition due to leaf cutting. Thus isoprene emission can uncouple from photosynthesis and may occur even after cutting leaves or branches, e.g., by agricultural practices or because of abiotic and biotic stresses. This observation may have important implications for assessments of isoprene sources and budget in the atmosphere, and consequences for tropospheric chemistry.
[Kohl2011] Kohl, I., J. Herbig, J. Beauchamp, J. Dunkl, O. Tietje, and A. Hansel, "Online breath analysis of volatile organic compounds with PTR-MS: a guanidino breath marker for the status of uremia and kidney transplant rejection diagnosis.", 4th International PTR-MS Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, pp. 251, 2011.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_5.pdf
2010
[1584] Hörtnagl, L., R. Clement, M. Graus, A. Hammerle, A. Hansel, and G. Wohlfahrt, "Dealing with disjunct concentration measurements in eddy covariance applications: a comparison of available approaches.", Atmos Environ (1994), vol. 44, May, 2010.
Link: http://www.sciencedirect.com/science/article/pii/S1352231010001810
Abstract
<p>Using proton transfer reaction mass spectrometry equipped with a quadrupol mass analyser to quantify the biosphere-atmosphere exchange of volatile organic compounds (VOC), concentrations of different VOC are measured sequentially. Depending on how many VOC species are targeted and their respective integration times, each VOC is measured at repeat rates on the order of a few seconds. This represents an order of magnitude longer sample interval compared to the standard eddy covariance (EC) method (5-20 Hz sampling rates). Here we simulate the effect of disjunct sampling on EC flux estimates by decreasing the time resolution of CO2 and H2O concentrations measured at 20 Hz above a temperate mountain grassland in the Austrian Alps. Fluxes for one month are calculated with the standard EC method and compared to fluxes calculated based on the disjunct data (1, 3 and 5 s sampling rates) using the following approaches: i) imputation of missing concentrations based on the nearest neighbouring samples (iDECnn), ii) imputation by linear interpolation (iDECli), and iii) virtual disjunct EC (vDEC), i.e. flux calculation based solely on the disjunct concentrations. It is shown that the two imputation methods result in additional low-pass filtering, longer lag times (as determined with the maximum cross-correlation method) and a flux loss of 3-30 % as compared to the standard EC method. A novel procedure, based on a transfer function approach, which specifically corrects for the effect of data treatment, was developed, resulting in improved correspondence (to within 2 %). The vDEC method yields fluxes which approximate the true (20 Hz) fluxes to within 3-7 % and it is this approach we recommend because it involves no additional empirical corrections. The only drawback of the vDEC method is the noisy nature of the cross-correlations, which poses problems with lag determination - practical approaches to overcome this limitation are discussed.</p>
[Graus2010] Graus, M., M. Müller, and A. Hansel, "High resolution PTR-TOF: quantification and formula confirmation of VOC in real time.", J Am Soc Mass Spectrom, vol. 21, no. 6: University of Innsbruck, Institute of Ion Physics and Applied Physics, Innsbruck, Austria., pp. 1037–1044, Jun, 2010.
Link: http://dx.doi.org/10.1016/j.jasms.2010.02.006
Abstract
We present the unprecedented capability to identify and quantify volatile organic compounds (VOCs) by means of proton transfer reaction time-of-flight (PTR-TOF) mass spectrometry on-line with high time resolution. A mass resolving power of 4000-5000 and a mass accuracy of 2.5 ppm allow for the unambiguous sum-formula identification of hydrocarbons (HCs) and oxygenated VOCs (OVOCs). Test masses measured over an 11-wk period are very precise (SD < 3.4 ppm) and the mass resolving power shows good stability (SD < 5%). Based on a 1 min time resolution, we demonstrate a detection limit in the low pptv range featuring a dynamic range of six orders of magnitude. Sub-ppbv VOC concentrations are analyzed within a second; sub-pptv detection limits are achieved within a few tens of minutes. We present a thorough characterization of our recently developed PTR-TOF system and address application fields for the new instrument.
[Mielke2010] Mielke, L. H., K. A. Pratt, P. B. Shepson, S. A. McLuckey, A. Wisthaler, and A. Hansel, "Quantitative determination of biogenic volatile organic compounds in the atmosphere using proton-transfer reaction linear ion trap mass spectrometry.", Anal Chem, vol. 82, no. 19: Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA., pp. 7952–7957, Oct, 2010.
Link: http://dx.doi.org/10.1021/ac1014244
Abstract
Although oxidation of biogenic volatile organic compounds (BVOCs) plays an important role in tropospheric ozone and secondary organic aerosol production, significant uncertainties remain in our understanding of the impacts of BVOCs on ozone, aerosols, and climate. To quantify BVOCs, the proton-transfer reaction linear ion trap (PTR-LIT) mass spectrometer was previously developed. The PTR-LIT represents an improvement over more traditional techniques (including the proton-transfer reaction mass spectrometer), providing the capability to directly quantify and differentiate isomeric compounds by MS/MS analysis, with better time resolution and minimal sample handling, compared to gas chromatography techniques. Herein, we present results from the first field deployment of the PTR-LIT. During the Program for Research on Oxidants: Photochemistry, Emissions and Transport (PROPHET) summer 2008 study in northern Michigan, the PTR-LIT successfully quantified isoprene, total monoterpenes, and isomeric isoprene oxidation products methyl vinyl ketone and methacrolein at sub-parts per billion (nmol/mol) levels in a complex forest atmosphere. The utility of the fast time response of the PTR-LIT was shown by the measurement of rapid changes in isoprene, methyl vinyl ketone, and methacrolein, concurrent with changing ozone mole fractions. Overall, the PTR-LIT was shown to be a viable field instrument with the necessary sensitivity, selectivity, and time response to provide detailed measurements of BVOC mole fractions in complex atmospheric samples, at trace levels.
[Schaub2010] Schaub, A., J. D. Blande, M. Graus, E. Oksanen, J. K. Holopainen, and A. Hansel, "Real-time monitoring of herbivore induced volatile emissions in the field.", Physiol Plant, vol. 138, no. 2: Ionicon Analytik GmbH, Technikerstrasse 21a, 6020 Innsbruck, Austria., pp. 123–133, Feb, 2010.
Link: http://dx.doi.org/10.1111/j.1399-3054.2009.01322.x
Abstract
When plants are damaged by herbivorous insects they emit a blend of volatile organic compounds (VOCs) which include a range or terpenoids and green leaf volatiles (GLVs) formed via different metabolic pathways. The precise timing of these emissions upon the onset of herbivore feeding has not been fully elucidated, and the information that is available has been mainly obtained through laboratory based studies. We investigated emissions of VOCs from Populus tremula L. xP. tremuloides Michx. during the first 20 h of feeding by Epirrita autumnata (autumnal moth) larvae in a field site. The study was conducted using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) to measure emissions online, with samples collected for subsequent analysis by complementary gas chromatography-mass spectrometry for purposes of compound identification. GLV emission peaks occurred sporadically from the outset, indicating herbivore activity, while terpene emissions were induced within 16 h. We present data detailing the patterns of monoterpene (MT), GLV and sesquiterpene (SQT) emissions during the early stages of herbivore feeding showing diurnal MT and SQT emission that is correlated more with temperature than light. Peculiarities in the timing of SQT emissions prompted us to conduct a thorough characterization of the equipment used to collect VOCs and thus corroborate the accuracy of results. A laboratory based analysis of the throughput of known GLV, MT and SQT standards at different temperatures was made with PTR-MS. Enclosure temperatures of 12, 20 and 25 degrees C had little influence on the response time for dynamic measurements of a GLV or MT. However, there was a clear effect on SQT measurements. Elucidation of emission patterns in real-time is dependent upon the dynamics of cuvettes at different temperatures.
[Seewald2010] Seewald, M. S. A., W. Singer, B. A. Knapp, I. H. Franke-Whittle, A. Hansel, and H. Insam, "Substrate-induced volatile organic compound emissions from compost-amended soils", Biology and Fertility of Soils, vol. 46: Springer-Verlag, pp. 371-382, 2010.
Link: http://dx.doi.org/10.1007/s00374-010-0445-0
Abstract
The agronomic effects of composts, mineral fertiliser and combinations thereof on chemical, biological and physiological soil properties have been studied in an 18-year field experiment. The present study aimed at tracing treatment effects by evaluating the volatile organic compound (VOC) emission of the differently treated soils: non-amended control, nitrogen fertilisation and composts (produced from organic waste and sewage sludge, respectively) in combination with nitrogen fertiliser. Microbial community structure was determined by denaturing gradient gel electrophoresis (DGGE). Aerobic and anaerobic soil VOC emission was determined after glucose amendment using proton transfer reaction–mass spectrometry (PTR-MS). After inducing VOC production by substrate (glucose) addition and at the same time reducing oxygen availability to impair degradation of the produced VOCs, we were able to differentiate among the treatments. Organic waste compost did not alter the VOC emissions compared to the untreated control, whilst sewage sludge composts and mineral fertilisation showed distinct effects. This differentiation was supported by DGGE analysis of fungal 18S rDNA fragments and confirms earlier findings on bacterial communities. Three major conclusions can be drawn: (1) VOC patterns are able to discriminate among soil treatments. (2) Sewage sludge compost and mineral fertilisation have not only the strongest impact on microbial community composition but also on VOC emission patterns, but specific tracer VOCs could not be identified. (3) Future efforts should aim at a PTR-MS-linked identification of the detected masses.
2009
[Boshier2009] Boshier, P., O. Priest, J. Herbig, G. Hanna, and N. Marczin, "Influence of respiratory manoeuvres on the 'on-line' detection of volatile organic compounds (VOCs) in exhaled by hs-PTR-MS", CONFERENCE SERIES, pp. 230, 2009.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_4.pdf
[Herbig2009a] Herbig, J., M. Müller, S. Schallhart, T. Titzmann, M. Graus, and A. Hansel, "On-line breath analysis with PTR-TOF.", J Breath Res, vol. 3, no. 2: Ionimed Analytik GmbH, Innsbruck, Austria., pp. 027004, Jun, 2009.
Link: http://dx.doi.org/10.1088/1752-7155/3/2/027004
Abstract
We report on on-line breath gas analysis with a new type of analytical instrument, which represents the next generation of proton-transfer-reaction mass spectrometers. This time-of-flight mass spectrometer in combination with the soft proton-transfer-reaction ionization (PTR-TOF) offers numerous advantages for the sensitive detection of volatile organic compounds and overcomes several limitations. First, a time-of-flight instrument allows for a measurement of a complete mass spectrum within a fraction of a second. Second, a high mass resolving power enables the separation of isobaric molecules and the identification of their chemical composition. We present the first on-line breath measurements with a PTR-TOF and demonstrate the advantages for on-line breath analysis. In combination with buffered end-tidal (BET) sampling, we obtain a complete mass spectrum up to 320 Th within one exhalation with a signal-to-noise ratio sufficient to measure down to pptv levels. We exploit the high mass resolving power to identify the main components in the breath composition of several healthy volunteers.
[Kohl2009] Kohl, I., J. Herbig, J. Beauchamp, J. Dunkl, O. Tietje, and A. Hansel, "Proton-transfer-reaction mass spectrometry online analysis of volatile organic compounds in the exhaled breath: kidney transplant rejection diagnosis", CONFERENCE SERIES, pp. 251, 2009.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_4.pdf#page=251
2008
[Herbig2008] Herbig, J., T. Titzmann, J. Beauchamp, I. Kohl, and A. Hansel, "Buffered end-tidal (BET) sampling-a novel method for real-time breath-gas analysis.", J Breath Res, vol. 2, no. 3: Ionimed Analytik GmbH, Technikerstrasse 21a, A-6020 Innsbruck, Austria., pp. 037008, Sep, 2008.
Link: http://iopscience.iop.org/1752-7163/2/3/037008/
Abstract
We present a novel method for real-time breath-gas analysis using mass-spectrometric techniques: buffered end-tidal (BET) on-line sampling. BET has several advantages over conventional direct on-line sampling where the subject inhales and exhales through a sampling tube. In our approach, a single exhalation is administered through a tailored tube in which the end-tidal fraction of the breath-gas sample is buffered. This increases sampling time by an order of magnitude to several seconds, improving signal quality and reducing the total measurement time per test subject. Furthermore, only one exhalation per minute is required for sampling and the test subject can otherwise maintain a normal breathing pattern, thereby reducing the risk of hyperventilation. To validate our new BET sampling method we conducted comparative measurements with direct on-line sampling using proton-transfer-reaction mass spectrometry. We find excellent agreement in measured acetone and acetonitrile concentrations. High variability observed in breath-by-breath isoprene concentrations is attributed to differences in exhalation depth and influences of hyperventilation on end-tidal concentrations.
[Mielke2008] Mielke, L. H., D. E. Erickson, S. A. McLuckey, M. Müller, A. Wisthaler, A. Hansel, and P. B. Shepson, "Development of a proton-transfer reaction-linear ion trap mass spectrometer for quantitative determination of volatile organic compounds.", Anal Chem, vol. 80, no. 21: Department of Chemistry, Purdue University, 860 Oval Drive West, Lafayette, Indiana 47907-2084, USA., pp. 8171–8177, Nov, 2008.
Link: http://dx.doi.org/10.1021/ac801328d
Abstract
Currently, proton-transfer reaction mass spectrometry (PTR-MS) allows for quantitative determination of volatile organic compounds in real time at concentrations in the low ppt range, but cannot differentiate isomers or isobaric molecules, using the conventional quadrupole mass filter. Here we pursue the application of linear quadrupole ion trap (LIT) mass spectrometry in combination with proton-transfer reaction chemical ionization to provide the advantages of specificity from MS/MS. A commercial PTR-MS platform composed of a quadrupole mass filter with the addition of end cap electrodes enabled the mass filter to operate as a linear ion trap. The rf drive electronics were adapted to enable the application of dipolar excitation to opposing rods, for collision-induced dissociation (CID) of trapped ions. This adaptation enabled ion isolation, ion activation, and mass analysis. The utility of the PTR-LIT was demonstrated by distinguishing between the isomeric isoprene oxidation pair, methyl vinyl ketone (MVK) and methacrolein (MACR). The CID voltage was adjusted to maximize the m/ z 41 to 43 fragment ratio of MACR while still maintaining adequate sensitivity. Linear calibration curves for MVK and MACR fragments at m/ z 41 and 43 were obtained with limits of detection of approximately 100 ppt, which should enable ambient measurements. Finally, the PTR-LIT method was compared to an established GC/MS method by quantifying MVK and MACR production during a smog chamber isoprene-NO x irradiation experiment.
2007
[Norman2007] Norman, M., A. Hansel, and A. Wisthaler, "O2+ as reagent ion in the PTR-MS instrument: Detection of gas-phase ammonia", International Journal of Mass Spectrometry, vol. 265, no. 2: Elsevier, pp. 382–387, 2007.
Link: http://www.sciencedirect.com/science/article/pii/S1387380607002515
Abstract
Oxygen was used as a source gas in a conventional Innsbruck PTR-MS instrument to produce O2+ ions as chemical ionization (CI) reagents instead of H3O+ ions. The use of O2+ ions as CI reagents allows for fast, highly sensitive and specific measurements of gas-phase ammonia (NH3) via the electron transfer reaction O2+ + NH3 → NH3+ + O2. The instrument was tested to be linear in the 2–2000 ppbv range. Instrument sensitivity was observed to be humidity-independent and amounted to ∼40 cps/ppbv. The instrumental background was determined by sampling NH3-free air from a heated platinum/palladium catalyst. A humidity-dependent increase of the instrumental background from 70 pptv at dry conditions to 470 pptv at humid conditions was observed. The corresponding 2σ-detection limits at 1 s signal integration time were 90 pptv for dry conditions and 230 pptv for humid conditions, respectively. The observed background may be intrinsically formed in the instrument's ion source but it may also be the result of incomplete NH3 oxidation in the catalyst used for zeroing. The reported background levels and detection limits are thus to be considered as upper limits. The 1/e response time of the instrument was in the range of 3–5 s. The PTR-MS instrument was successfully deployed in the field to monitor changes in gas-phase NH3 concentrations in the few seconds to tens of seconds time range. Laboratory intercomparison measurements between the PTR-MS instrument and a commercial NH3 analyzer (AiRRmonia) were in good agreement. The use of O2+ ions as CI reagents will significantly improve the analytical capabilities of the Innsbruck PTR-MS instrument.
[Wisthaler2007] Wisthaler, A., P. Strøm-Tejsen, L. Fang, T. J. Arnaud, A. Hansel, T. D. Maerk, and D. P. Wyon, "PTR-MS assessment of photocatalytic and sorption-based purification of recirculated cabin air during simulated 7-h flights with high passenger density.", Environ Sci Technol, vol. 41, no. 1: Institut fuer Ionenphysik, Leopold-Franzens- Universitaet Innsbruck, A-6020 Innsbruck, Austria. armin.wisthaler@uibk.ac.at, pp. 229–234, Jan, 2007.
Link: http://pubs.acs.org/doi/abs/10.1021/es060424e
Abstract
Four different air purification conditions were established in a simulated 3-row 21-seat section of an aircraft cabin: no air purifier; a photocatalytic oxidation unit with an adsorptive prefilter; a second photocatalytic unit with an adsorptive prefilter; and a two-stage sorption-based air filter (gas-phase absorption and adsorption). The air purifiers placed in the cabin air recirculation system were commercial prototypes developed for use in aircraft cabin systems. The four conditions were established in balanced order on 4 successive days of each of 4 successive weeks during simulated 7-h flights with 17 occupants. Proton-transfer reaction mass spectrometry was used to assess organic gas-phase pollutants and the performance of each air purifier. The concentration of most organic pollutants present in aircraft cabin air was efficiently reduced by all three units. The photocatalytic units were found to incompletely oxidize ethanol released by the wet wipes commonly supplied with airline mealsto produce unacceptably high levels of acetaldehyde and formaldehyde.
2006
[Mueller2006] Müller, K., S. Haferkorn, W. Grabmer, A. Wisthaler, A. Hansel, J. Kreuzwieser, C. Cojocariu, H. Rennenberg, and H. Herrmann, "Biogenic carbonyl compounds within and above a coniferous forest in Germany", Atmospheric Environment, vol. 40: Elsevier, pp. 81–91, 2006.
Link: http://www.sciencedirect.com/science/article/pii/S1352231006003220
Abstract
Diurnal mixing ratios of aldehydes and ketones were investigated during two joint experiments in summer months to identify biogenic contributions from coniferous forests to tropospheric chemistry. In a Norway spruce forest, the diurnal variation of carbonyl compounds was measured at 12 m (in the treetop) and at 24 m (above the canopy). The main findings of the experiment are that acetone (up to 9.1 ppbv), formaldehyde (up to 6.5 ppbv), acetaldehyde (up to 5.5 ppbv) and methyl ethyl ketone (MEK, up to 1.8 ppbv) were found in highest concentrations. For all major compounds with the exception of MEK, primary emissions are supposed. From α-pinene oxidation, pinonaldehyde was found with its peak concentrations (up to 0.15 ppbv) during the early morning hours. The diurnal variation of concentrations for most other compounds shows maximum concentrations near midday in 2,4-dinitrophenylhydrazine (DNPH) measurements but not for proton-transfer reaction mass spectrometry (PTR-MS) measurements of acetaldehyde and acetone. A clear correlation of carbonyl compound concentration to the radiation intensity and the temperature (R2=0.66) was found. However, formaldehyde did not show distinct diurnal variations. A very high correlation was observed for both heights between mixing ratios of acetaldehyde and acetone (R2=0.84), acetone and MEK (R2=0.90) as well as acetaldehyde and MEK (R2=0.88) but not for formaldehyde and the others. For the most time, the observed carbonyl compound concentrations above the canopy are higher than within the forest stand. This indicates an additional secondary formation in the atmosphere above the forest. The differences of acetone and acetaldehyde mixing ratios detected by DNPH technique and the PTR-MS could not be fully clarified by a laboratory intercomparison.
[Mayrhofer2006] Mayrhofer, S., T. Mikoviny, S. Waldhuber, A. O. Wagner, G. Innerebner, I. H. Franke-Whittle, T. D. Maerk, A. Hansel, and H. Insam, "Microbial community related to volatile organic compound (VOC) emission in household biowaste.", Environ Microbiol, vol. 8, no. 11: Institut fuer Mikrobiologie, Universitaet Innsbruck, Innsbruck, Austria. sabine.mayrhofer@uibk.ac.at, pp. 1960–1974, Nov, 2006.
Link: http://dx.doi.org/10.1111/j.1462-2920.2006.01076.x
Abstract
Malodorous emissions and potentially pathogenic microorganisms which develop during domestic organic waste collection are not only a nuisance but may also pose health risks. The aim of the present study was to determine whether the presence of specific microorganisms in biowastes is directly related to the composition of the emitted volatile organic compounds (VOCs). The succession of microbial communities during 16 days of storage in organic waste collection bins was studied by denaturing gradient gel electrophoresis (DGGE) of amplified 16S ribosomal DNA in parallel with a classical cultivation and isolation approach. Approximately 60 different bacterial species and 20 different fungal species were isolated. Additionally, some bacterial species were identified through sequencing of excised DGGE bands. Proton transfer reaction mass spectrometry (PTR-MS) was used to detect VOCs over the sampling periods, and co-inertia analyses of VOC concentrations with DGGE band intensities were conducted. Positive correlations, indicating production of the respective VOC or enhancement of microbial growth, and negative correlations, indicating the use of, or microbial inhibition by the respective compound, were found for the different VOCs. Measurement of the VOC emission pattern from a pure culture of Lactococcus lactis confirmed the positive correlations for the protonated masses 89 (tentatively identified as butyric acid), 63 (tentatively identified as dimethylsulfide), 69 (likely isoprene) and 73 (likely butanone).
[Tholl2006] Tholl, D., W. Boland, A. Hansel, F. Loreto, U. Röse, SR, and JÖRG-PETER. SCHNITZLER, "Practical approaches to plant volatile analysis", The Plant Journal, vol. 45, no. 4: Wiley Online Library, pp. 540–560, 2006.
Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2005.02612.x/full
Abstract
Plants emit volatile organic compounds (VOCs) that play important roles in their interaction with the environment and have a major impact on atmospheric chemistry. The development of static and dynamic techniques for headspace collection of volatiles in combination with gas chromatography–mass spectrometry analysis has significantly improved our understanding of the biosynthesis and ecology of plant VOCs. Advances in automated analysis of VOCs have allowed the monitoring of fast changes in VOC emissions and facilitated in vivo studies of VOC biosynthesis. This review presents an overview of methods for the analysis of plant VOCs, including their advantages and disadvantages, with a focus on the latest technical developments. It provides guidance on how to select appropriate instrumentation and protocols for biochemical, physiological and ecologically relevant applications. These include headspace analyses of plant VOCs emitted by the whole organism, organs or enzymes as well as advanced on-line analysis methods for simultaneous measurements of VOC emissions with other physiological parameters.

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.