Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 29 results
[ Title(Asc)] Year
Filters: Author is Jordan, A  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
[Yeretzian2000a] Yeretzian, C., A. Jordan, H. Brevard, and W. Lindinger, "Time-resolved headspace analysis by proton-transfer-reaction mass-spectrometry", ACS Symposium Series, vol. 763: ACS Publications, pp. 58–72, 2000.
Link: http://pubs.acs.org/doi/abs/10.1021/bk-2000-0763.ch006
Abstract
A recently developed technique, Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS), is reviewed based on applications on coffee. PTR-MS is a sensitive and fast method for on-line trace gas analysis. It consists of a specially designed chemical ionization cell, where headspace gas is continuously introduced and volatile organic compounds ionized by proton-transfer from H3O+. Protonated compounds are then mass analyzed in a quadrupole mass filter. First a description of the method will be given, with emphasis on the ionization mechanism. We then discuss a series of experiments that allow mass spectral intensities to be related to chemical compounds. Finally, two applications on coffee are discussed.
R
[Lindinger2011] Lindinger, C., B. Agarwal, F. Petersson, S. Juerschik, P. Sulzer, A. Jordan, P. Watts, CA. Mayhew, K. Becker, and TD. Märk, "Recent developments in Proton-Transfer-Reaction Mass Spectrometry leading to new fields of application (eg illicit and designer drugs detection)", : IONICON Analytik, 2011.
Link: http://www.ionicon.com/downloads/Drugs_Poster_ASMS_web.pdf
Q
[Prazeller1998] Prazeller, P., T. Karl, A. Jordan, R. Holzinger, A. Hansel, and W. Lindinger, "Quantification of passive smoking using proton-transfer-reaction mass spectrometry", International journal of mass spectrometry, vol. 178, no. 3: Elsevier, pp. L1–L4, 1998.
Link: http://www.sciencedirect.com/science/article/pii/S1387380698141532
P
[Boschetti1999] Boschetti, A., F. Biasioli, M. Van Opbergen, C. Warneke, A. Jordan, R. Holzinger, P. Prazeller, T. Karl, A. Hansel, W. Lindinger, et al., "PTR-MS real time monitoring of the emission of volatile organic compounds during postharvest aging of berryfruit", Postharvest Biology and Technology, vol. 17, no. 3: Elsevier, pp. 143–151, 1999.
Link: http://www.sciencedirect.com/science/article/pii/S0925521499000526
[Jordan2010b] Jordan, A., G. Hanel, E. Hartungen, P. Sulzer, H. Seehauser, S. Haidacher, R. Schottkowsky, F. Petersson, C. Lindinger, L. Märk, et al., "Proton-Transfer-Reaction Time of Flight Mass-Spectrometry (PTR-TOF-MS): Comparison of Compact-Time of Flight (C TOF) and High Resolution-Time of Flight (HRS TOF) Platforms", , 2010.
Link: http://www.ionicon.com/downloads/IONICON_PTR-TOF-MS-poster.pdf
[Lindinger1998] Lindinger, W., and A. Jordan, "Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels", Chem. Soc. Rev., vol. 27, no. 5: The Royal Society of Chemistry, pp. 347–375, 1998.
Link: http://pubs.rsc.org/en/content/articlepdf/1998/cs/a827347z
[Hansel1999] Hansel, A., A. Jordan, C. Warneke, R. Holzinger, A. Wisthaler, and W. Lindinger, "Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at volume mixing ratios of a few pptv", Plasma Sources Science and Technology, vol. 8, no. 2: IOP Publishing, pp. 332, 1999.
Link: http://iopscience.iop.org/0963-0252/8/2/314
[Warneke1996] Warneke, C., J. Kuczynski, A. Hansel, A. Jordan, W. Vogel, and W. Lindinger, "Proton transfer reaction mass spectrometry (PTR-MS): propanol in human breath", International journal of mass spectrometry and ion processes, vol. 154, no. 1: Elsevier, pp. 61–70, 1996.
Link: http://www.sciencedirect.com/science/article/pii/0168117696043698
Abstract
Proton transfer reaction mass spectrometry (PTR-MS) based on reactions of H3O+ ions has been used to measure the concentrations of propanol in 46 healthy persons, yielding an average concentration of about 150 ppb. That the measurements were not obscured by other components of the same mass as propanol was proven by comparison of PTR-MS data with separate selected-ion flow-drift tube (SIFDT) investigations of the energy dependences of reactions of H3O+ and H3O+·H2O with isopropanol, n-propanol, acetic acid and methyl formate.
[Boschetti2000] Boschetti, A., A. Jordan, T. Toccoli, S. Iannotta, L. Fadanelli, W. Lindinger, and F. Biasioli, "Proton transfer reaction mass spectrometry: a new technique to assess post harvest quality of strawberries", IV International Strawberry Symposium 567, pp. 739–742, 2000.
Link: http://www.actahort.org/books/567/567_162.htm
O
[Jordan2009c] Jordan, A., S. Haidacher, G. Hanel, E. Hartungen, J. Herbig, L. Maerk, R. Schottkowsky, H. Seehauser, P. Sulzer, and TD. Maerk, "An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+ SRI- MS)", International Journal of Mass Spectrometry, vol. 286, no. 1: Elsevier, pp. 32–38, 2009.
Link: http://www.sciencedirect.com/science/article/pii/S1387380609002036
Abstract
Proton-transfer-reaction mass-spectrometry (PTR-MS) developed in the 1990s is used today in a wide range of scientific and technical fields. PTR-MS allows for real-time, online determination of absolute concentrations of volatile (organic) compounds (VOCs) in air with high sensitivity (into the low pptv range) and a fast response time (in the 40–100 ms time regime). Most PTR-MS instruments employed so far use an ion source consisting of a hollow cathode (HC) discharge in water vapour which provides an intense source of proton donor H3O+ ions. As the use of other ions, e.g. NO+ and O2+, can be useful for the identification of VOCs and for the detection of VOCs with proton affinities (PA) below that of H2O, selected ion flow tube mass spectrometry (SIFT-MS) with mass selected ions has been applied in these instances. SIFT-MS suffers, however, from at least two orders lower reagent ion counts rates and therefore SIFT-MS suffers from lower sensitivity than PTR-MS. Here we report the development of a PTR-MS instrument using a modified HC ion source and drift tube design, which allows for the easy and fast switching between H3O+, NO+ and O2+ ions produced in high purity and in large quantities in this source. This instrument is capable of measuring low concentrations (with detection limits approaching the ppqv regime) of VOCs using any of the three reagent ions investigated in this study. Therefore this instrument combines the advantages of the PTR-MS technology (the superior sensitivity) with those of SIFT-MS (detection of VOCs with PAs smaller than that of the water molecule and the capability to distinguish between isomeric compounds). We will first discuss the setup of this new PTR+SRI-MS mass spectrometer instrument, its performance for aromates, aldehydes and ketones (with a sensitivity of up to nearly 1000 cps/ppbv and a detection limit of about several 100 ppqv) and finally give some examples concerning the ability to distinguish structural isomeric compounds.
[Yeretzian2000] Yeretzian, C., A. Jordan, H. Brevard, and W. Lindinger, "On-line monitoring of coffee roasting by proton-transfer-reaction mass-spectrometry", ACS Symposium Series, vol. 763: ACS Publications, pp. 112–125, 2000.
Link: http://pubs.acs.org/doi/abs/10.1021/bk-2000-0763.ch010
N
[Jordan2010c] Jordan, A., G. Hanel, E. Hartungen, P. Sulzer, H. Seehauser, S. Haidacher, R. Schottkowsky, C. Lindinger, L. Märk, and TD. Märk, "Novel Developments in Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS): Switchable Reagent Ions (PTR+ SRI-MS) and ppqv Detection Limit", : IONICON Analytik, 2010.
Link: http://www.technologynetworks.com/images/news/uploadedimages/poster2.pdf
M
[Jordan2012] Jordan, A., C. Lindinger, L. Märk, P. Sulzer, S. Juerschik, H. Seehauser, and TD. Märk, "Monitoring and Quantifying Toxic Industrial Compounds (TICs) with Proton with Proton-Transfer-Reaction Mass Spectrometry (PTR Reaction Mass Spectrometry (PTR-MS)", : IONICON Analytik, 2012.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/poster_ionicon_pittcon_2012_tics.pdf
I
[Warneke2001a] Warneke, C., R. Holzinger, A. Hansel, A. Jordan, W. Lindinger, U. Poeschl, J. Williams, P. Hoor, H. Fischer, PJ. Crutzen, et al., "Isoprene and its oxidation products methyl vinyl ketone, methacrolein, and isoprene related peroxides measured online over the tropical rain forest of Surinam in March 1998", Journal of Atmospheric Chemistry, vol. 38, no. 2: Springer, pp. 167–185, 2001.
Link: http://www.springerlink.com/index/u14w8w3187r33ur2.pdf
[Hansel1998] Hansel, A., A. Jordan, C. Warneke, R. Holzinger, and W. Lindinger, "Improved detection limit of the proton-transfer reaction mass spectrometer: On-line monitoring of volatile organic compounds at mixing ratios of a few pptv", Rapid communications in mass spectrometry, vol. 12, no. 13: Wiley Online Library, pp. 871–875, 1998.
Link: http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0231(19980715)12:13%3C871::AID-RCM245%3E3.0.CO;2-L/abstract
H
[Jordan2009b] Jordan, A., S. Haidacher, G. Hanel, E. Hartungen, L. Maerk, H. Seehauser, R. Schottkowsky, P. Sulzer, and TD. Maerk, "A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS)", International Journal of Mass Spectrometry, vol. 286, no. 2: Elsevier, pp. 122–128, 2009.
Link: http://www.sciencedirect.com/science/article/pii/S1387380609002371
Abstract
Proton-transfer-reaction mass spectrometry (PTR-MS) developed about 10 years ago is used today in a wide range of scientific and technical fields allowing real-time on-line measurements of volatile organic compounds in air with a high sensitivity and a fast response time. Most instruments employed so far use quadrupole filters to analyze product ions generated in the reaction drift tube. Due to the low mass resolution of the quadrupoles used this has the disadvantage that identification of trace gases under study is not unambiguous. Here we report the development of a new version of PTR-MS instruments using a time-of-flight mass spectrometer, which is capable of measuring VOCs at ultra-low concentrations (as low as a few pptv) under high mass resolution (as high as 6000 m/Δm in the V-mode) with a mass range of beyond 100 000 amu. This instrument was constructed by interfacing the well characterized and recently improved Ionicon hollow cathode ion source and drift tube section with a Tofwerk orthogonal acceleration reflectron time-of-flight mass spectrometer. We will first discuss the set-up of this new PTR-TOF-MS mass spectrometer instrument, its performance (with a sensitivity of several tens of cps/ppbv) and finally give some examples concerning urban air measurements where sensitivity, detection limit and mass resolution is essential to obtain relevant data.
[Poeschl2001] Pöschl, U., J. Williams, P. Hoor, H. Fischer, PJ. Crutzen, C. Warneke, R. Holzinger, A. Hansel, A. Jordan, W. Lindinger, et al., "High acetone concentrations throughout the 0–12 km altitude range over the tropical rainforest in Surinam", Journal of atmospheric chemistry, vol. 38, no. 2: Springer, pp. 115–132, 2001.
Link: http://link.springer.com/article/10.1023/A:1006370600615
[Jordan2010a] Jordan, A., S. Jaksch, S. Juerschik, A. Edtbauer, B. Agarwal, G. Hanel, E. Hartungen, H. Seehauser, L. Märk, P. Sulzer, et al., "H3O+, NO+ and O2 as precursor ions in PTR as precursor ions in PTR-MS: isomeric VOC compounds and reactions with different chemical groups", : IONICON Analytik, 2010.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/poster_ionicon_dgms_sri.pdf
F
[Edtbauer2013] Edtbauer, A., E. Hartungen, A. Jordan, P. Sulzer, S. Juerschik, S. Feil, G. Hanel, S. Jaksch, L. Maerk, and T. D. Maerk, "From Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) to Universal Trace Gas Analysis with Selective-Reagent-Ionization Mass Spectrometry (SRI-MS) in Kr+ mode", CONFERENCE SERIES, pp. 76, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
E
[Lindinger1997] Lindinger, W., J. Taucher, A. Jordan, A. Hansel, and W. Vogel, "Endogenous production of methanol after the consumption of fruit", Alcoholism: Clinical and Experimental Research, vol. 21, no. 5: Wiley Online Library, pp. 939–943, 1997.
Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1530-0277.1997.tb03862.x/abstract
Abstract
After the consumption of fruit, the concentration of methanol in the human body increases by as much as an order of magnitude. This is due to the degradation of natural pectin (which is esterified with methyl alcohol) in the human colon. In vivo tests performed by means of proton-transfer-reaction mass spectrometry show that consumed pectin in either a pure form (10 to 15 g) or a natural form (in 1 kg of apples) induces a significant increase of methanol in the breath (and by inference in the blood) of humans. The amount generated from pectin (0.4 to 1.4 g) is approximately equivalent to the total daily endogenous production (measured to be 0.3 to 0.6 g/day) or that obtained from 0.3 liters of 80-proof brandy (calculated to be 0.5 g). This dietary pectin may contribute to the development of nonalcoholic cirrhosis of the liver.
D
[Juerschik2010] Juerschik, S., A. Tani, P. Sulzer, S. Haidacher, A. Jordan, R. Schottkowsky, E. Hartungen, G. Hanel, H. Seehauser, L. Märk, et al., "Direct aqueous injection analysis of trace compounds in water with proton-transfer-reaction mass spectrometry (PTR-MS)", International Journal of Mass Spectrometry, vol. 289, no. 2: Elsevier, pp. 173–176, 2010.
Link: http://www.sciencedirect.com/science/article/pii/S1387380609003406
Abstract
Here we present proof-of-principle investigations on a novel inlet system for proton-transfer-reaction mass spectrometry (PTR-MS) that allows for the analysis of trace compounds dissolved in water. The PTR-MS technique offers many advantages, such as real-time analysis, online quantification, no need for sample preparation, very low detection limits, etc.; however it requires gas phase samples and therefore liquid samples cannot be investigated directly. Attempts to measure trace compounds in water that have been made so far are mainly headspace analysis above the water surface and membrane inlet setups, which both are well suitable for certain applications, but also suffer from significant disadvantages. The direct aqueous injection (DAI) technique which we will discuss here turns out to be an ideal solution for the analysis of liquid samples with PTR-MS. We show that we can detect trace compounds in water over several orders of magnitude down to a concentration level of about 100 pptw, while only consuming about 100 μl of the sample. The response time of the setup is about 20 s and can therefore definitely be called “online”. Moreover the method is applicable to the analysis of all substances and not limited by the permeability of a membrane.
[Wisthaler2013] Wisthaler, A., JH. Crawford, S. Haidacher, G. Hanel, E. Hartungen, A. Jordan, L. Märk, T. Mikoviny, M. Müller, P. Mutschlechner, et al., "Development of a compact PTR-ToF-MS for Suborbital Research on the Earth's Atmospheric Composition", CONFERENCE SERIES, pp. 96, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf#page=97
[Sulzer2013] Sulzer, P., T. Kassebacher, S. Juerschik, M. Lanza, E. Hartungen, A. Jordan, A. Edtbauer, S. Feil, G. Hanel, J1. L. S Maerk, et al., "Detection of Toxic Industrial Compounds (TIC) with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for a real-life monitoring scenario", CONFERENCE SERIES, pp. 196, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Sulzer2011] Sulzer, P., A. Jordan, G. Hanel, E. Hartungen, H. Seehauser, L. Märk, S. Haidacher, R. Schottkowsky, KH. Becker, and TD. Märk, "Detection of explosives Detection of explosives with Proton Transfer Reaction Transfer Reaction-Mass Spectrometry Mass Spectrometry", , 2011.
Link: http://www.ionicon.com/downloads/IONICON_Illicit-substances-detection_PTR-MS.pdf
[Juerschik2013] Juerschik, S., M. Lanza, P. Sulzer, B. Agarwal, E. Hartungen, A. Edtbauer, S. Feil, A. Jordan, G. Hanel, CA. Mayhew, et al., "Designer Drugs and Trace Explosives Detection with the Help of Very Recent Advancements in Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)", CONFERENCE SERIES, pp. 182, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.