Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 59 results
Title [ Year(Asc)]
Filters: Author is Gasperi, Flavia  [Clear All Filters]
2016
[1724] Capozzi, V., S. Makhoul, E. Aprea, A. Romano, L. Cappellin, A. Sanchez Jimena, G. Spano, F. Gasperi, M. Scampicchio, and F. Biasioli, "PTR-{MS} Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin", Molecules, vol. 21, pp. 483, Apr, 2016.
Link: http://dx.doi.org/10.3390/molecules21040483
Abstract
<p>In light of the increasing attention towards &ldquo;green&rdquo; solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.</p>
2015
[1710] Gamero-Negrón, R., J. {Sánchez Del Pulgar}, L. Cappellin, C. García, F. Gasperi, and F. Biasioli, "Immune-spaying as an alternative to surgical spaying in Iberian × Duroc females: Effect on the VOC profile of dry-cured shoulders and dry-cured loins as detected by PTR-ToF-MS.", Meat Sci, vol. 110, pp. 169–173, Dec, 2015.
Link: http://dx.doi.org/10.1016/j.meatsci.2015.07.018
Abstract
<p>Immunocastration in pigs has been proposed as a cruelty-free alternative to surgical castration. In this work the effect of immune-spaying of female pigs on the volatile compound profile of Iberian dry-cured products was evaluated. The head-space volatile compound of dry-cured shoulders and loins from surgically spayed, immune-spayed and entire Iberian &times; Duroc females was characterized by proton transfer reaction-time of flight-mass spectrometry. It was not possible to identify a significant effect of the castration modality on dry-cured shoulders, probably because of the heterogeneity of samples. Contrarily, Principal Component Analysis of dry-cured loins indicates a better homogeneity of samples and the separation of loins from surgically spayed and immune-spayed females. Some mass peaks tentatively identified as important flavor compounds in dry-cured products, 3-methylbutanal, 2,3-butanedione and 3-methylbutanoic acid, were significantly higher in the immune-spayed females. Therefore, immune-spaying seems to have a negligible effect on the volatile compound profile of dry-cured shoulders, whereas it could affect the VOC profile in the case of dry-cured loins.</p>
[1706] Aprea, E., A. Romano, E. Betta, F. Biasioli, L. Cappellin, M. Fanti, and F. Gasperi, "Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis.", J Mass Spectrom, vol. 50, pp. 56–64, Jan, 2015.
Link: http://dx.doi.org/10.1002/jms.3469
Abstract
<p>Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques.</p>
2014
[1548] Aprea, E., L. Cappellin, F. Gasperi, F. Morisco, V. Lembo, A. Rispo, R. Tortora, P. Vitaglione, N. Caporaso, and F. Biasioli, "Application of PTR-TOF-{MS} to investigate metabolites in exhaled breath of patients affected by coeliac disease under gluten free diet", Journal of Chromatography B, vol. 966, pp. 208–213, Sep, 2014.
Link: http://dx.doi.org/10.1016/j.jchromb.2014.02.015
Abstract
<p>Coeliac disease (CD) is a common chronic inflammatory disorder of the small bowel induced in genetically susceptible people by the exposure to gliadin gluten. Even though several tests are available to assist the diagnosis, CD remains a biopsy-defined disorder, thus any non-invasive or less invasive diagnostic tool may be beneficial. The analysis of volatile metabolites in exhaled breath, given its non-invasive nature, is particularly promising as a screening tool of disease in symptomatic or non-symptomatic patients. In this preliminary study the proton transfer reaction time of flight mass spectrometry coupled to a buffered end-tidal on-line sampler to investigate metabolites in the exhaled breath of patients affected by coeliac disease under a gluten free diet was applied. Both H3O+ or NO+ were used as precursor ions. In our investigation no differences were found in the exhaled breath of CD patients compared to healthy controls. In this study, 33 subjects were enrolled: 16 patients with CD, all adhering a gluten free diet, and 17 healthy controls. CD patients did not show any symptom of the disease at the time of breath analysis; thus the absence of discrimination from healthy controls was not surprising.</p>
[1565] Makhoul, S., A. Romano, L. Cappellin, G. Spano, V. Capozzi, E. Benozzi, T. D. Märk, E. Aprea, F. Gasperi, H. El-Nakat, et al., "Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters", Journal of Mass Spectrometry, vol. 49, pp. 850--859, Sep, 2014.
Link: http://dx.doi.org/10.1002/jms.3421
Abstract
<p>The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1 g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16 h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds. Copyright &copy; 2014 John Wiley &amp; Sons, Ltd.</p>
[1609] Makhoul, S., A. Romano, L. Cappellin, G. Spano, V. Capozzi, E. Benozzi, T. D. Märk, E. Aprea, F. Gasperi, H. El-Nakat, et al., "Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters.", J Mass Spectrom, vol. 49, pp. 850–859, Sep, 2014.
Link: http://dx.doi.org/10.1002/jms.3421
Abstract
<p>The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1&thinsp;g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16&thinsp;h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds.</p>
[1704] Yener, S., A. Romano, L. Cappellin, T. D. Märk, J. {Sánchez Del Pulgar}, F. Gasperi, L. Navarini, and F. Biasioli, "PTR-ToF-MS characterisation of roasted coffees (C. arabica) from different geographic origins.", J Mass Spectrom, vol. 49, pp. 929–935, Sep, 2014.
Link: http://dx.doi.org/10.1002/jms.3455
Abstract
<p>Characterisation of coffees according to their origins is of utmost importance for commercial qualification. In this study, the aroma profiles of different batches of three monoorigin roasted Coffea arabica coffees (Brazil, Ethiopia and Guatemala) were analysed by Proton-Transfer-Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS). The measurements were performed with the aid of a multipurpose autosampler. Unsupervised and supervised multivariate data analysis techniques were applied in order to visualise data and classify the coffees according to origin. Significant differences were found in volatile profiles of coffees. Principal component analysis allowed visualising a separation of the three coffees according to geographic origin and further partial least square regression-discriminant analysis classification showed completely correct predictions. Remarkably, the samples of one batch could be used as training set to predict geographic origin of the samples of the other batch, suggesting the possibility to predict further batches in coffee production by means of the same approach. Tentative identification of mass peaks aided characterisation of aroma fractions. Classification pinpointed some volatile compounds important for discrimination of coffees.</p>
2013
[Romano2013] Romano, A., L. Cappellin, V. Ting, E. Aprea, L. Navarini, M. Barnabà, F. Gasperi, and F. Biasioli, "Hyphenation of PTR-ToF-MS and newly developed software provides a new effective tool for the study of inter-individual differences among tasters", CONFERENCE SERIES, pp. 59, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Ting2013] Ting, V. J. L., C. Soukoulis, E. Aprea, P. Silcock, P. Bremer, A. Romano, L. Cappellin, F. Gasperi, and F. Biasioli, "In-vivo volatile organic compound (VOC) release from fresh-cut apple cultivars: PTR-Quad-MS and PTR-ToF-MS", CONFERENCE SERIES, pp. 229, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Tsevdou2013] Tsevdou, M., C. Soukoulis, L. Cappellin, F. Gasperi, P. S. Taoukis, and F. Biasioli, "Monitoring the effect of high pressure and transglutaminase treatment of milk on the evolution of flavour compounds during lactic acid fermentation using PTR-ToF-MS.", Food Chem, vol. 138, no. 4: Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Polytechnioupoli Zografou, Zografou 15780, Athens, Greece., pp. 2159–2167, Jun, 2013.
Link: http://dx.doi.org/10.1016/j.foodchem.2012.12.007
Abstract
In this study, the effects of thermal or high hydrostatic pressure (HHP) treatment of a milk base in the absence or presence of a transglutaminase (TGase) protein cross-linking step on the flavour development of yoghurt were investigated. The presence of several tentatively identified volatile flavour compounds (VOCs), both during the enzymatic treatment and the lactic acid fermentation of the milk base, were monitored using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). The formation of the major flavour compounds (acetaldehyde, diacetyl, acetoin, and 2-butanone) followed a sigmoidal trend described by the modified Gompertz model. The HHP treatment of milk increased significantly the volatile compound formation rate whereas it did not affect the duration of the lag phase of formation, with the exception of acetaldehyde and diacetyl formation. On the contrary, the TGase cross-linking of milk did not significantly modify the formation rate of the volatile compounds but shortened the duration of the lag phase of their formation.
[Cappellin2013a] Cappellin, L., E. Aprea, P. Granitto, A. Romano, F. Gasperi, and F. Biasioli, "Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS", Food Research International: Elsevier, 2013.
Link: http://www.sciencedirect.com/science/article/pii/S0963996913000975
Abstract
Multiclass sample classification and marker selection are cutting-edge problems in metabolomics. In the present study we address the classification of 14 raspberry cultivars having different levels of gray mold (Botrytis cinerea) susceptibility. We characterized raspberry cultivars by two headspace analysis methods, namely solid-phase microextraction/gas chromatography–mass spectrometry (SPME/GC–MS) and proton transfer reaction-mass spectrometry (PTR-MS). Given the high number of classes, advanced data mining methods are necessary. Random Forest (RF), Penalized Discriminant Analysis (PDA), Discriminant Partial Least Squares (dPLS) and Support Vector Machine (SVM) have been employed for cultivar classification and Random Forest-Recursive Feature Elimination (RF-RFE) has been used to perform feature selection. In particular the most important GC–MS and PTR-MS variables related to gray mold susceptibility of the selected raspberry cultivars have been investigated. Moving from GC–MS profiling to the more rapid and less invasive PTR-MS fingerprinting leads to a cultivar characterization which is still related to the corresponding Botrytis susceptibility level and therefore marker identification is still possible.
[Cappellin2013] Cappellin, L., F. Loreto, E. Aprea, A. Romano, J. Sánchez { Del Pulgar}, F. Gasperi, and F. Biasioli, "PTR-MS in Italy: A Multipurpose Sensor with Applications in Environmental, Agri-Food and Health Science.", Sensors (Basel), vol. 13, no. 9: Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, San Michele all'Adige 38010, Italy. francesco.loreto@cnr.it., pp. 11923–11955, 2013.
Link: http://dx.doi.org/10.3390/s130911923
Abstract
Proton Transfer Reaction Mass Spectrometry (PTR-MS) has evolved in the last decade as a fast and high sensitivity sensor for the real-time monitoring of volatile compounds. Its applications range from environmental sciences to medical sciences, from food technology to bioprocess monitoring. Italian scientists and institutions participated from the very beginning in fundamental and applied research aiming at exploiting the potentialities of this technique and providing relevant methodological advances and new fundamental indications. In this review we describe this activity on the basis of the available literature. The Italian scientific community has been active mostly in food science and technology, plant physiology and environmental studies and also pioneered the applications of the recently released PTR-ToF-MS (Proton Transfer Reaction-Time of Flight-Mass Spectrometry) in food science and in plant physiology. In the very last years new results related to bioprocess monitoring and health science have been published as well. PTR-MS data analysis, particularly in the case of the ToF based version, and the application of advanced chemometrics and data mining are also aspects characterising the activity of the Italian community.
[Soukoulis2013] Soukoulis, C., L. Cappellin, E. Aprea, F. Costa, R. Viola, TD.. Märk, F. Gasperi, and F. Biasioli, "PTR-ToF-MS, A Novel, Rapid, High Sensitivity and Non-Invasive Tool to Monitor Volatile Compound Release During Fruit Post-Harvest Storage: The Case Study of Apple Ripening", Food and Bioprocess Technology, vol. 6, no. 10: Springer US, pp. 2831-2843, 2013.
Link: http://dx.doi.org/10.1007/s11947-012-0930-6
Abstract
In the present study, the potential of PTR-ToF-MS for addressing fundamental and technical post-harvest issues was tested on the non-destructive and rapid monitoring of volatile compound evolution in three apple cultivars (‘Golden Delicious’, ‘Braeburn’ and ‘Gold Rush’) during 25 days of post-harvest shelf life ripening. There were more than 800 peaks in the PTR-ToF-MS spectra of apple headspace and many of them were associated with relevant compounds. Besides the ion produced upon proton transfer, we used the ion at mass 28.031 (C2H 4 +) produced by charge transfer from residual O 2 + as a monitor for ethylene concentration. ‘Golden Delicious’ apples were characterised by higher ethylene emission rates than ‘Gold Rush’ and ‘Braeburn’, and quantitative comparison has been supported by two segment piecewise linear model fitting. Ester evolution during post-harvest ripening is strongly dependent on endogenous ethylene concentration levels. For ‘Golden Delicious’ and ‘Braeburn’, sesquiterpenes (alpha-farnesene) exhibited a fast response to ethylene emission followed by a rapid decline after the endogenous ethylene maximum peak. Carbonyl compounds displayed a different time evolution as compared to esters and terpenes and did not show any evident relationship with ethylene. Methanol and ethanol concentrations during the entire storage period did not change significantly. We show how multivariate analysis can efficiently handle the large datasets produced by PTR-ToF-MS and that the outcomes obtained are in agreement with the literature. The different volatile compounds could be simultaneously monitored with high time resolution, providing advantages over the more established techniques for the investigation of VOC dynamics in fruit post-harvest storage trials.
[Morisco2013] Morisco, F., E. Aprea, V. Lembo, V. Fogliano, P. Vitaglione, G. Mazzone, L. Cappellin, F. Gasperi, S. Masone, G. Domenico { De Palma}, et al., "Rapid "breath-print" of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study.", PLoS One, vol. 8, no. 4: Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy. filomena.morisco@unina.it, pp. e59658, 2013.
Link: http://dx.doi.org/10.1371/journal.pone.0059658
Abstract
The aim of the present work was to test the potential of Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) in the diagnosis of liver cirrhosis and the assessment of disease severity by direct analysis of exhaled breath. Twenty-six volunteers have been enrolled in this study: 12 patients (M/F 8/4, mean age 70.5 years, min-max 42-80 years) with liver cirrhosis of different etiologies and at different severity of disease and 14 healthy subjects (M/F 5/9, mean age 52.3 years, min-max 35-77 years). Real time breath analysis was performed on fasting subjects using a buffered end-tidal on-line sampler directly coupled to a PTR-ToF-MS. Twelve volatile organic compounds (VOCs) resulted significantly differently in cirrhotic patients (CP) compared to healthy controls (CTRL): four ketones (2-butanone, 2- or 3- pentanone, C8-ketone, C9-ketone), two terpenes (monoterpene, monoterpene related), four sulphur or nitrogen compounds (sulfoxide-compound, S-compound, NS-compound, N-compound) and two alcohols (heptadienol, methanol). Seven VOCs (2-butanone, C8-ketone, a monoterpene, 2,4-heptadienol and three compounds containing N, S or NS) resulted significantly differently in compensate cirrhotic patients (Child-Pugh A; CP-A) and decompensated cirrhotic subjects (Child-Pugh B+C; CP-B+C). ROC (Receiver Operating Characteristic) analysis was performed considering three contrast groups: CP vs CTRL, CP-A vs CTRL and CP-A vs CP-B+C. In these comparisons monoterpene and N-compound showed the best diagnostic performance.Breath analysis by PTR-ToF-MS was able to distinguish cirrhotic patients from healthy subjects and to discriminate those with well compensated liver disease from those at more advanced severity stage. A breath-print of liver cirrhosis was assessed for the first time.
[Schuhfried2013] Schuhfried, E., M. Probst, J. Limtrakul, S. Wannakao, E. Aprea, L. Cappellin, T. D. Märk, F. Gasperi, and F. Biasioli, "Sulfides: chemical ionization induced fragmentation studied with proton transfer reaction-mass spectrometry and density functional calculations.", J Mass Spectrom, vol. 48, no. 3: Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria., pp. 367–378, Mar, 2013.
Link: http://dx.doi.org/10.1002/jms.3153
Abstract
We report the energy-dependent fragmentation patterns upon protonation of eight sulfides (organosulfur compounds) in Proton Transfer Reaction-Mass Spectrometry (PTR-MS). Studies were carried out, both, experimentally with PTR-MS, and with theoretical quantum-chemical methods. Charge retention usually occurred at the sulfur-containing fragment for short chain sulfides. An exception to this is found in the unsaturated monosulfide allylmethyl sulfide (AMS), which preferentially fragmented to a carbo-cation at m/z 41, C3H5(+). Quantum chemical calculations (DFT with the M062X functional 6-31G(d,p) basis sets) for the fragmentation reaction pathways of AMS indicated that the most stable protonated AMS cation at m/z 89 is a protonated (cyclic) thiirane, and that the fragmentation reaction pathways of AMS in the drift tube are kinetically controlled. The protonated parent ion MH(+) is the predominant product in PTR-MS, except for diethyl disulfide at high collisional energies. The saturated monosulfides R-S-R' (with R<R') have little or no fragmentation, at the same time the most abundant fragment ion is the smaller R-S(+) fragment. The saturated disulfides R-S-S-R display more fragmentation than the saturated monosulfides, the most common fragments are disulfide containing fragments or long-chain carbo-cations. The results rationalize fragmentation data for saturated monosulfides and disulfides and represent a detailed analysis of the fragmentation of an unsaturated sulfide. Apart from the theoretical interest, the results are in support of the quantitative analysis of sulfides with PTR-MS, all the more so as PTR-MS is one of a few techniques that allow for ultra-low quantitative analysis of sulfides.
2012
[Aprea2012] Aprea, E., F. Morisco, F. Biasioli, P. Vitaglione, L. Cappellin, C. Soukoulis, V. Lembo, F. Gasperi, G. D'Argenio, V. Fogliano, et al., "Analysis of breath by proton transfer reaction time of flight mass spectrometry in rats with steatohepatitis induced by high-fat diet.", J Mass Spectrom, vol. 47, no. 9: IASMA Research and Innovation Centre, Fondazione Edmund Mach, Food Quality and Nutrition Department, Via E. Mach, 1, 38010, S. Michele a/A, Italy. eugenio.aprea@iasma.it, pp. 1098–1103, Sep, 2012.
Link: http://dx.doi.org/10.1002/jms.3009
Abstract
Breath testing has been largely used as a diagnostic tool, but the difficulties in data interpretation and sample collection have limited its application. We developed a fast (< 20?s), on-line, non-invasive method for the collection and analysis of exhaled breath in awake rats based on proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS) and applied it to investigate possible relationships between pathologies induced by dietary regime and breath composition. As a case study, we investigated rats with dietary induced non-alcoholic steatohepatitis (NASH) and modifications induced by coffee addition to the diet. We considered two different diets (standard and high fat) complemented with two different drinking possibilities (water or decaffeinated coffee) for a total of four groups with four rats each. Several spectrometric peaks were reliable markers for both dietary fat content and coffee supplementation. The high resolution and accuracy of PTR-ToF-MS allowed the identification of related compounds such as methanol, dimethyl sulphide, dimethyl sulphone and ammonia. In conclusion, the rapid and minimally invasive breath analysis of awake rats permitted the identification of markers related to diet and specific pathologic conditions and provided a useful tool for broader metabolic investigations.
[Schuhfried2012] Schuhfried, E., E. Aprea, L. Cappellin, C. Soukoulis, R. Viola, T. D. Maerk, F. Gasperi, and F. Biasioli, "Desorption kinetics with PTR-MS: Isothermal differential desorption kinetics from a heterogeneous inlet surface at ambient pressure and a new concept for compound identification", International journal of mass spectrometry, vol. -: Elsevier, pp. -, 2012.
Link: http://www.sciencedirect.com/science/article/pii/S1387380612000292
Abstract
Proton transfer reaction-mass spectrometry (PTR-MS) is a soft ionization mass spectrometric technique for monitoring volatile organic compounds (VOCs) with a very low limit of detection (LOD) (parts per trillion by volume) and excellent time resolution (split seconds). This makes PTR-MS a particularly interesting instrument for investigating surface desorption kinetics of volatile organic compounds (VOCs) under realistic conditions, i.e., at ambient pressure from a heterogeneous surface. Here, we report on the investigation of heterogeneous inlet surface kinetics with PTR-MS and based thereon, develop concepts to assist compound identification in PTR-MS. First, we studied differential isothermal desorption kinetics using heterogeneous inlet surface data measured by Mikoviny et al. [7] with their newly developed high-temp-PTR-MS. The best fit to their data is obtained with bimodal pseudo-first order kinetics. In addition, we explored the normalization of the data and calculated data points of the desorption isotherms. We found evidence that the interesting part of the isotherm can be linearized in a double log plot. Then we investigated the idea to use memory effects of the inlet system to assist compound identification. At the moment, the main problem is the dependence of the kinetics on the initial equilibrium gas phase adsorption concentration, and thus, the surface coverage. As a solution, we suggest an empirical, quasi-concentration independent, yet compound specific parameter: the normalized desorption time tnd describing the decline of the signal to 1/e2 of the initial concentration, normalized to an initial concentration of 10,000 counts per second (cps). Furthermore, we investigated property–property and structure–property relationships of this new parameter. Further possible improvements are discussed as well.
[JLTing2012] Ting, V. J. L., C. Soukoulis, P. Silcock, L. Cappellin, A. Romano, E. Aprea, P. J. Bremer, T. D. Märk, F. Gasperi, and F. Biasioli, "In Vitro and In Vivo Flavor Release from Intact and Fresh-Cut Apple in Relation with Genetic, Textural, and Physicochemical Parameters", Journal of food science, vol. 77, no. 11: Wiley Online Library, pp. C1226–C1233, 2012.
Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1750-3841.2012.02947.x/full
Abstract
Flavor release from 6 commercial apple cultivars (Fuji, Granny Smith, Golden Delicious, Jonagold, Morgen Dallago, and Red Delicious) under static conditions (intact or fresh-cut samples) and during consumption of fresh-cut samples (nosespace) was determined by proton transfer reaction mass spectrometry. Textural (firmness, fracturability, flesh elasticity, and rupture) and physicochemical (pH, acidity, and water content) properties of the apples were also measured. Static headspace analysis of intact fruits revealed Fuji and Granny Smith apples had the lowest concentration for all measured flavor compounds (esters, aldehydes, alcohols, and terpenes), whereas Red Delicious apples had the highest. Fresh-cut samples generally showed a significant increase in total volatile compounds with acetaldehyde being most abundant. However, compared to intact fruits, cut Golden and Red Delicious apples had a lower intensity for ester related peaks. Five parameters were extracted from the nosespace data of peaks related to esters (m/z 43, 61), acetaldehyde (m/z 45), and ethanol (m/z 47): 2 associated with mastication (duration of mastication–tcon; time required for first swallowing event–tswal), and 3 related with in-nose volatile compound concentration (area under the curve–AUC; maximum intensity–Imax; time for achieving Imax–tmax). Three different behaviors were identified in the nosespace data: a) firm samples with low AUC and tswal values (Granny Smith, Fuji), b) mealy samples with high AUC, Imax, tswal values, and low tcon (Morgen Dallago, Golden Delicious), and c) firm samples with high AUC and Imax values (Red Delicious). Strengths and limitations of the methodology are discussed.
[Ting2012] Ting, V. J. L., C. Soukoulis, P. Silcock, L. Cappellin, A. Romano, E. Aprea, P. J. Bremer, T. D. Maerk, F. Gasperi, and F. Biasioli, "In vitro and in vivo flavor release from intact and fresh-cut apple in relation with genetic, textural, and physicochemical parameters.", J Food Sci, vol. 77, no. 11: Research and Innovation Centre, Foundation Edmund Mach, via Mach 1, San Michele all' Adige, (TN), Italy., pp. C1226–C1233, Nov, 2012.
Link: http://dx.doi.org/10.1111/j.1750-3841.2012.02947.x
Abstract
Flavor release from 6 commercial apple cultivars (Fuji, Granny Smith, Golden Delicious, Jonagold, Morgen Dallago, and Red Delicious) under static conditions (intact or fresh-cut samples) and during consumption of fresh-cut samples (nosespace) was determined by proton transfer reaction mass spectrometry. Textural (firmness, fracturability, flesh elasticity, and rupture) and physicochemical (pH, acidity, and water content) properties of the apples were also measured. Static headspace analysis of intact fruits revealed Fuji and Granny Smith apples had the lowest concentration for all measured flavor compounds (esters, aldehydes, alcohols, and terpenes), whereas Red Delicious apples had the highest. Fresh-cut samples generally showed a significant increase in total volatile compounds with acetaldehyde being most abundant. However, compared to intact fruits, cut Golden and Red Delicious apples had a lower intensity for ester related peaks. Five parameters were extracted from the nosespace data of peaks related to esters (m/z 43, 61), acetaldehyde (m/z 45), and ethanol (m/z 47): 2 associated with mastication (duration of mastication-t(con); time required for first swallowing event-t(swal)), and 3 related with in-nose volatile compound concentration (area under the curve-AUC; maximum intensity-I(max); time for achieving I(max)-t(max)). Three different behaviors were identified in the nosespace data: a) firm samples with low AUC and t(swal) values (Granny Smith, Fuji), b) mealy samples with high AUC, I(max), t(swal) values, and low t(con) (Morgen Dallago, Golden Delicious), and c) firm samples with high AUC and I(max) values (Red Delicious). Strengths and limitations of the methodology are discussed. PRACTICAL APPLICATION: Volatile compounds play a fundamental role in the perceived quality of food. Using apple cultivars, this research showed that in vivo proton transfer reaction mass spectrometry (PTR-MS) could be used to determine the relationship between the release of volatile flavor compounds and the physicochemical parameters of a real food matrix. This finding suggests that in vivo PTR-MS coupled with traditional physicochemical measurements could be used to yield information on flavor release from a wide range of food matrices and help in the development of strategies to enhance food flavor and quality.
[Papurello2012] Papurello, D., C. Soukoulis, E. Schuhfried, L. Cappellin, F. Gasperi, S. Silvestri, M. Santarelli, and F. Biasioli, "Monitoring of volatile compound emissions during dry anaerobic digestion of the Organic Fraction of Municipal Solid Waste by Proton Transfer Reaction Time-of-Flight Mass Spectrometry.", Bioresour Technol, vol. 126: Fondazione Edmund Mach, Biomass and Renewable Energy Unit, Via E. Mach 1, 38010 San Michele a/A, Italy., pp. 254–265, Dec, 2012.
Link: http://dx.doi.org/10.1016/j.biortech.2012.09.033
Abstract
Volatile Organic Compounds (VOCs) formed during anaerobic digestion of aerobically pre-treated Organic Fraction of Municipal Solid Waste (OFMSW), have been monitored over a 30 day period by a direct injection mass spectrometric technique: Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Most of the tentatively identified compounds exhibited a double-peaked emission pattern which is probably the combined result from the volatilization or oxidation of the biomass-inherited organic compounds and the microbial degradation of organic substrates. Of the sulfur compounds, hydrogen sulfide had the highest accumulative production. Alkylthiols were the predominant sulfur organic compounds, reaching their maximum levels during the last stage of the process. H(2)S formation seems to be influenced by the metabolic reactions that the sulfur organic compounds undergo, such as a methanogenesis induced mechanism i.e. an amino acid degradation/sulfate reduction. Comparison of different batches indicates that PTR-ToF-MS is a suitable tool providing information for rapid in situ bioprocess monitoring.
[Soukoulis2012] Soukoulis, C., F. Biasioli, E. Aprea, E. Schuhfried, L. Cappellin, T. D. Märk, and F. Gasperi, "PTR-TOF-MS Analysis for Influence of Milk Base Supplementation on Texture and Headspace Concentration of Endogenous Volatile Compounds in Yogurt", Food and Bioprocess Technology, vol. 5, no. 6: Springer, pp. 2085–2097, 2012.
Link: http://link.springer.com/article/10.1007/s11947-010-0487-1
Abstract
In the present study, the effects of milk fat (0.3% and 3.5% w/w), solids non-fat (8.4% and 13% w/w), and modified tapioca starch (0%, 0.5%, 1.0%, 1.5%, and 2.0% w/w) concentrations on the textural and physicochemical properties as well as the concentration of several endogenous flavor compounds in the headspace of set and stirred yogurts were investigated. The novel proton transfer reaction time-of-flight mass spectrometry technique was implemented for the non-invasive determination of the amounts of volatile organic compounds in the samples headspace. Milk fat and skim milk powder supplementation of the milk samples increased significantly the firmness and adhesiveness of yogurts (p < 0.001) and improved the stability of the formed gels by increasing their water holding capacity and reducing the amounts of expulsed whey (3.94 and 5.1 g for the milk fat and SNF-fortified samples). Acetaldehyde was significantly (p < 0.001) higher in the low fat-unfortified systems (6.15 ± 0.48 and 5.6 ± 0.60 ppmv, respectively). A similar trend was also reported in the case of 2-propanone (0.91 ± 0.11 and 1.13 ± 0.07 ppmv), diacetyl (334 ± 37 and 350 ± 34 ppbv), 2,3-pentanedione (54 ± 6 and 55 ± 6 ppbv), and 2-butanone (56 ± 7 and 68 ± 5 ppbv) for the same systems. In contrast, the concentration of flavor compounds in the headspace with hydroxyl groups (ethanol and acetoin) increased (p < 0.001) by solid non-fat fortification of milk base (350 ± 32 and 206 ± 7 ppbv, respectively, for the systems fortified with skim milk powder). Modified tapioca starch addition improved the textural properties and gel stability of yogurts whereas affected only the ethanol concentration (222 ± 16 and 322 ± 55 for the control and 2.0% w/w containing systems, respectively). Our data suggested that the reinforcement of textural and structural properties combined with the protein binding affinity of the flavor compounds seemed to be responsible for the aforementioned observations. In the case of stirred yogurts, the gel breakdown did not provoke significant changes in the headspace concentration of the most compounds, with the exception of ethanol, acetoin, and 2,3-pentanedione being significantly (p < 0.05) higher in the stirred yogurts (267 ± 29, 153 ± 11, and 38 ± 1 ppbv, respectively) than set style ones (232 ± 19, 134 ± 9, and 45 ± 3 ppbv, respectively).
[Cappellin2012] Cappellin, L., C. Soukoulis, E. Aprea, P. Granitto, N. Dallabetta, F. Costa, R. Viola, T. D. Märk, F. Gasperi, and F. Biasioli, "PTR-ToF-MS and data mining methods: a new tool for fruit metabolomics", Metabolomics, vol. 8, no. 5: Springer, pp. 761–770, 2012.
Link: http://link.springer.com/article/10.1007/s11306-012-0405-9
Abstract
Proton Transfer Reaction-Mass Spectrometry (PTR-MS) in its recently developed implementation based on a time-of-flight mass spectrometer (PTR-ToF-MS) has been evaluated as a possible tool for rapid non-destructive investigation of the volatile compounds present in the metabolome of apple cultivars and clones. Clone characterization is a cutting-edge problem in technical management and royalty application, not only for apple, aiming at unveiling real properties which differentiate the mutated individuals. We show that PTR-ToF-MS coupled with multivariate and data mining methods may successfully be employed to obtain accurate varietal and clonal apple fingerprint. In particular, we studied the VOC emission profile of five different clones belonging to three well known apple cultivars, such as ‘Fuji’, ‘Golden Delicious’ and ‘Gala’. In all three cases it was possible to set classification models which can distinguish all cultivars and some of the clones considered in this study. Furthermore, in the case of ‘Gala’ we also identified estragole and hexyl 2-methyl butanoate contributing to such clone characterization. Beside its applied relevance, no data on the volatile profiling of apple clones are available so far, our study indicates the general viability of a metabolomic approach for volatile compounds in fruit based on rapid PTR-ToF-MS fingerprinting.
[Heenan2012] Heenan, S., C. Soukoulis, P. Silcock, A. Fabris, E. Aprea, L. Cappellin, T. D. Märk, F. Gasperi, and F. Biasioli, "PTR-TOF-MS monitoring of in vitro and in vivo flavour release in cereal bars with varying sugar composition", Food chemistry, vol. 131, no. 2: Elsevier, pp. 477–484, 2012.
Link: http://www.sciencedirect.com/science/article/pii/S0308814611012660
Abstract
In the present study, PTR-TOF-MS was applied to better understand the influence of sugar composition on flavour release in a strawberry flavoured cereal bar system. To achieve this, measurements were made both statically from the headspace above cereal bar samples (in vitro) and dynamically from flavour release in the nose space during consumption (in vivo). An artificial strawberry flavour of known constituents (17 flavour active volatile compounds) was used in the preparation of cereal bars. For in vitro measurements, eight samples varying in the glucose syrup solids 42DE to polydextrose ratio were assessed. Measurements clearly showed that the level of glucose syrup solids substitution by polydextrose influenced the release of the added flavour compounds. In addition, distinguishable differences were detected for the release of volatile compounds between samples with different levels of glucose syrup solids and polydextrose during in vivo measurements. The improved mass resolution, sensitivity and speed of PTR-TOF-MS enabled direct comparisons between the rate compounds reached the nose space, maximum nose space concentration of compounds, and the time after which compounds were no longer detected in the nose-space.
[Cappellin2012a] Cappellin, L., T. Karl, M. Probst, O. Ismailova, P. M. Winkler, C. Soukoulis, E. Aprea, T. D. Maerk, F. Gasperi, and F. Biasioli, "On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry.", Environ Sci Technol, vol. 46, no. 4: IASMA Research and Innovation Centre, Fondazione Edmund Mach, Food Quality and Nutrition Area, Via E. Mach, 1, 38010, S. Michele a/A, Italy., pp. 2283–2290, Feb, 2012.
Link: http://dx.doi.org/10.1021/es203985t
Abstract
Proton transfer reaction - mass spectrometry (PTR-MS) has become a reference technique in environmental science allowing for VOC monitoring with low detection limits. The recent introduction of time-of-flight mass analyzer (PTR-ToF-MS) opens new horizons in terms of mass resolution, acquisition time, and mass range. A standard procedure to perform quantitative VOC measurements with PTR-ToF-MS is to calibrate the instrument using a standard gas. However, given the number of compounds that can be simultaneously monitored by PTR-ToF-MS, such a procedure could become impractical, especially when standards are not readily available. In the present work we show that, under particular conditions, VOC concentration determinations based only on theoretical predictions yield good accuracy. We investigate a range of humidity and operating conditions and show that theoretical VOC concentration estimations are accurate when the effect of water cluster ions is negligible. We also show that PTR-ToF-MS can successfully be used to estimate reaction rate coefficients between H(3)O(+) and VOC at PTR-MS working conditions and find good agreement with the corresponding nonthermal theoretical predictions. We provide a tabulation of theoretical rate coefficients for a number of relevant volatile organic compounds at various energetic conditions and test the approach in a laboratory study investigating the oxidation of alpha-pinene.
2011
[Cappellin2011a] Cappellin, L., F. Biasioli, P. M. Granitto, E. Schuhfried, C. Soukoulis, F. Costa, T. D. Maerk, and F. Gasperi, "On data analysis in PTR-TOF-MS: From raw spectra to data mining", Sensors and actuators B: Chemical, vol. 155, no. 1: Elsevier, pp. 183–190, 2011.
Link: http://www.sciencedirect.com/science/article/pii/S0925400510009135
Abstract
Recently the coupling of proton transfer reaction ionization with a time-of-flight mass analyser (PTR-TOF-MS) has been proposed to realise a volatile organic compound (VOC) detector that overcomes the limitations in terms of time and mass resolution of the previous instrument based on a quadrupole mass analysers (PTR-Quad-MS). This opens new horizons for research and allows for new applications in fields where the rapid and sensitive monitoring and quantification of volatile organic compounds (VOCs) is crucial as, for instance, environmental sciences, food sciences and medicine. In particular, if coupled with appropriate data mining methods, it can provide a fast MS-nose system with rich analytical information. The main, perhaps even the only, drawback of this new technique in comparison to its precursor is related to the increased size and complexity of the data sets obtained. It appears that this is the main limitation to its full use and widespread application. Here we present and discuss a complete computer-based strategy for the data analysis of PTR-TOF-MS data from basic mass spectra handling, to the application of up-to date data mining methods. As a case study we apply the whole procedure to the classification of apple cultivars and clones, which was based on the distinctive profiles of volatile organic compound emissions.

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.