Callback Service


The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Asc)]
Filters: Author is B.P. Chandra  [Clear All Filters]
[1823] Chandra, B.P.., V. Sinha, H. Hakkim, and B. Sinha, "Storage stability studies and field application of low cost glass flasks for analyses of thirteen ambient {VOCs} using proton transfer reaction mass spectrometry", International Journal of Mass Spectrometry, vol. 419, pp. 11–19, aug, 2017.
<p>Ambient volatile organic compounds play a key role in atmospheric chemistry and air pollution studies due to their chemical reactivity and in several instances high toxicity. Quantification of ambient whole air samples which contain reactive and short-lived VOCs such as acetaldehyde, isoprene, dimethylsulphide and trimethylbenzenes at ppt-ppb concentrations is analytically challenging and generally accomplished using online proton transfer reaction mass spectrometry. Deployment of online instrumentation is still not feasible in several regions of the world due to practical constraints (power, safety issues). Consequently there is paucity of VOC data in vast regions of the world. We present here, the validation and application of a novel method for ambient VOC speciation and emission factor studies using low cost (&lt;100 USD) whole air glass flask samplers and offline proton transfer reaction mass spectrometry that can help reduce the paucity of VOC datasets. Experiments to assess the stability during storage of thirteen VOCs, many of which are very reactive, showed that acetaldehyde, acetonitrile, acetone, dimethylsulphide, methyl vinyl and methyl ethyl ketones, benzene, xylenes, trimethylbenzenes and monoterpenes can be quantified reproducibly within the respective precision error (e.g. 40% at 100ppt α-pinene and 3% at 13 ppb acetaldehyde) between collection and storage (at &gt;95% confidence), for samples analyzed within 10 days of collection. For toluene and isoprene, similar results were obtained until day 9 and 1, respectively and at confidence &gt;70%, over the 10 day period. A storage artefact was observed for methanol resulting in higher analytical uncertainty of upto 40%. We applied the method for measuring toluene/benzene emission ratios and aromatic VOCs in traffic plumes, and determining VOC emission factors (gVOC/kg fuel) from an agricultural wheat straw fire in India. The results of this study demonstrate that use of the low cost glass flask samplers described herein can significantly improve acquisition of spatially and temporally resolved datasets for atmospheric chemistry and air quality studies at sites where online deployment of instruments remains unfeasible.</p>
[1822] Chandra, B.P.., and V. Sinha, "Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide", Environment International, vol. 88, pp. 187–197, mar, 2016.
<p>In the north west Indo-Gangetic Plain (N.W.IGP), large scale post-harvest paddy residue fires occur every year during the months of October&ndash;November. This anthropogenic perturbation causes contamination of the atmospheric environment with adverse impacts on regional air quality posing health risks for the population exposed to high concentrations of carcinogens such as benzene and toxic VOCs such as isocyanic acid. These gases and carbon monoxide are known to be emitted from biomass fires along with acetonitrile. Yet no long-term in-situ measurements quantifying the impact of this activity have been carried out in the N.W. IGP. Using high quality continuous online in-situ measurements of these gases at a strategic downwind site over a three year period from 2012 to 2014, we demonstrate the strong impact of this anthropogenic emission activity on ambient concentrations of these gases. In contrast to the pre-paddy harvest period, excellent correlation of benzenoids, isocyanic acid and CO with acetonitrile (a biomass burning chemical tracer); (r &ge; 0.82) and distinct VOC/acetonitrile emission ratios were observed for the post-paddy harvest period which was also characterized by high ambient concentrations of these species. The average concentrations of acetonitrile (1.62 &plusmn; 0.18 ppb), benzene (2.51 &plusmn; 0.28 ppb), toluene (3.72 &plusmn; 0.41 ppb), C8-aromatics (2.88 &plusmn; 0.30 ppb), C9-aromatics (1.55 &plusmn; 0.19 ppb) and CO (552 &plusmn; 113 ppb) in the post-paddy harvest periods were about 1.5 times higher than the annual average concentrations. For isocyanic acid, a compound with both primary and secondary sources, the concentration in the post-paddy harvest period was 0.97 &plusmn; 0.17 ppb. The annual average concentrations of benzene, a class A carcinogen, exceeded the annual exposure limit of 1.6 ppb at NTP mandated by the National Ambient Air Quality Standard of India (NAAQS). We show that mitigating the post-harvest paddy residue fires can lower the annual average concentration of benzene and ensure compliance with the NAAQS. Calculations of excessive lifetime cancer risk due to benzene amount to 25 and 10 per million inhabitants for children and adults, respectively, exceeding the USEPA threshold of 1 per million inhabitants. Annual exposure to isocyanic acid was close to 1 ppb, the concentration considered to be sufficient to enhance risks for cardiovascular diseases and cataracts. This study makes a case for urgent mitigation of post-harvest paddy residue fires as the unknown synergistic effect of multi-pollutant exposure due to emissions from this anthropogenic source may be posing grave health risks to the population of the N.W. IGP.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.