Callback Service


The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Asc)]
Filters: Author is Baerbel Sinha  [Clear All Filters]
[1823] Chandra, B.P.., V. Sinha, H. Hakkim, and B. Sinha, "Storage stability studies and field application of low cost glass flasks for analyses of thirteen ambient {VOCs} using proton transfer reaction mass spectrometry", International Journal of Mass Spectrometry, vol. 419, pp. 11–19, aug, 2017.
<p>Ambient volatile organic compounds play a key role in atmospheric chemistry and air pollution studies due to their chemical reactivity and in several instances high toxicity. Quantification of ambient whole air samples which contain reactive and short-lived VOCs such as acetaldehyde, isoprene, dimethylsulphide and trimethylbenzenes at ppt-ppb concentrations is analytically challenging and generally accomplished using online proton transfer reaction mass spectrometry. Deployment of online instrumentation is still not feasible in several regions of the world due to practical constraints (power, safety issues). Consequently there is paucity of VOC data in vast regions of the world. We present here, the validation and application of a novel method for ambient VOC speciation and emission factor studies using low cost (&lt;100 USD) whole air glass flask samplers and offline proton transfer reaction mass spectrometry that can help reduce the paucity of VOC datasets. Experiments to assess the stability during storage of thirteen VOCs, many of which are very reactive, showed that acetaldehyde, acetonitrile, acetone, dimethylsulphide, methyl vinyl and methyl ethyl ketones, benzene, xylenes, trimethylbenzenes and monoterpenes can be quantified reproducibly within the respective precision error (e.g. 40% at 100ppt α-pinene and 3% at 13 ppb acetaldehyde) between collection and storage (at &gt;95% confidence), for samples analyzed within 10 days of collection. For toluene and isoprene, similar results were obtained until day 9 and 1, respectively and at confidence &gt;70%, over the 10 day period. A storage artefact was observed for methanol resulting in higher analytical uncertainty of upto 40%. We applied the method for measuring toluene/benzene emission ratios and aromatic VOCs in traffic plumes, and determining VOC emission factors (gVOC/kg fuel) from an agricultural wheat straw fire in India. The results of this study demonstrate that use of the low cost glass flask samplers described herein can significantly improve acquisition of spatially and temporally resolved datasets for atmospheric chemistry and air quality studies at sites where online deployment of instruments remains unfeasible.</p>
[1821] Garg, S., B. Praphulla Chandra, V. Sinha, R. Sarda-Esteve, V. Gros, and B. Sinha, "Limitation of the Use of the Absorption Angstrom Exponent for Source Apportionment of Equivalent Black Carbon: a Case Study from the North West Indo-Gangetic Plain", Environmental Science {&} Technology, vol. 50, pp. 814–824, jan, 2016.
<p>Angstrom exponent measurements of equivalent black carbon (BCeq) have recently been introduced as a novel tool to apportion the contribution of biomass burning sources to the BCeq mass. The BCeq is the mass of ideal BC with defined optical properties that, upon deposition on the aethalometer filter tape, would cause equal optical attenuation of light to the actual PM2.5 aerosol deposited. The BCeq mass hence is identical to the mass of the total light-absorbing carbon deposited on the filter tape. Here, we use simultaneously collected data from a seven-wavelength aethalometer and a high-sensitivity proton-transfer reaction mass spectrometer installed at a suburban site in Mohali (Punjab), India, to identify a number of biomass combustion plumes. The identified types of biomass combustion include paddy- and wheat-residue burning, leaf litter, and garbage burning. Traffic plumes were selected for comparison. We find that the combustion efficiency, rather than the fuel used, determines αabs, and consequently, the αabs can be &sim;1 for flaming biomass combustion and &gt;1 for older vehicles that operate with poorly optimized engines. Thus, the absorption angstrom exponent is not representative of the fuel used and, therefore, cannot be used as a generic tracer to constrain source contributions.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.