Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
[ Title(Asc)] Year
Filters: Author is Achim Edtbauer  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
[1464] Edtbauer, A., E. Hartungen, A. Jordan, G. Hanel, J. Herbig, S. Jürschik, M. Lanza, K. Breiev, L. Märk, and P. Sulzer, "Theory and practical examples of the quantification of CH4, CO, O2, and \{CO2\} with an advanced proton-transfer-reaction/selective-reagent-ionization instrument (PTR/SRI-MS)", International Journal of Mass Spectrometry, pp. -, 2013.
Link: http://www.sciencedirect.com/science/article/pii/S1387380613004235
Abstract
<p>Abstract Following up the first introduction of an advanced proton-transfer-reaction mass spectrometry (PTR-MS) instrument in 2012, which is capable of utilizing H3O+, NO+, O2+, and Kr+, respectively, for chemical ionization and subsequent detection of a broad variety of compound classes, here we present calculations of the best suitable mixing ratios between the sample and buffer gas in Kr+ mode, as well as two possible applications of such an instrument in indoor air analysis and engine exhaust studies. Due to secondary reactions in the drift tube the admixing of a buffer gas with a higher recombination energy than Kr+ is inevitable. The calculations show that though a dilution ratio of 1:40 (sample : buffer gas) results in the highest sensitivity, for accurate substance quantification a dilution ratio of at least 1:500 is necessary. By applying this theoretical knowledge to two practical examples, we find that the quantification of CH4, CO, O2, and CO2, respectively, is well within the range of the expected concentrations. We conclude that such an instrument can be of utmost benefit for researchers working for example in environmental research, because in H3O+ mode volatile organic compounds can be quantified with very high sensitivity and low detection limits and by means of switching the reagent ions to Kr+ additional instrumentation for quantification of (inorganic) pollutants becomes virtually obsolete.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.