Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Filters: Author is Stutz, J  [Clear All Filters]
2011
[Warneke2011] Warneke, C., P. Veres, JS. Holloway, J. Stutz, C. Tsai, S. Alvarez, B. Rappenglueck, FC. Fehsenfeld, M. Graus, JB. Gilman, et al., "Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results", Atmospheric Measurement Techniques Discussions, vol. 4, no. 4: Copernicus GmbH, pp. 4631–4665, 2011.
Link: http://www.atmos-meas-tech-discuss.net/4/4631/2011/amtd-4-4631-2011.html
Abstract
We present quantitative, fast time response measurements of formaldehyde (HCHO) onboard an aircraft using a Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) instrument. The HCHO measurement by PTR-MS is strongly humidity dependent and therefore airborne measurements are difficult and have not been reported. The PTR-MS instrument was run in the normal operating mode, where about 15 volatile organic compounds (VOCs) are measured together with HCHO onboard the NOAA WP-3 aircraft during the CalNex 2010 campaign in California. We compare the humidity dependence determined in the laboratory with in-flight calibrations of HCHO and calculate the HCHO mixing ratio during all flights using the results from both. The detection limit for HCHO was between 100 pptv in the dry free troposphere and 300 pptv in the humid marine boundary layer for a one second acquisition time every 17 s. The PTR-MS measurements are compared with HCHO measurements using a DOAS instrument and a Hantzsch monitor at a ground site in Pasadena. The PTR-MS agreed with both instruments within the stated uncertainties. We also compare HCHO enhancement ratios in the Los Angeles basin and in the free troposphere with literature values and find good agreement. The usefulness of the PTR-MS HCHO measurements in atmospheric observations is demonstrated by following an isolated anthropogenic plume. The photochemical production of HCHO can be observed simultaneously with production of acetaldehyde and the photochemical degradation of aromatic compounds using the PTR-MS.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.