Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Filters: Author is Custer, TG  [Clear All Filters]
2009
[Sinha2009] Sinha, V., TG. Custer, T. Kluepfel, and J. Williams, "The effect of relative humidity on the detection of pyrrole by PTR-MS for OH reactivity measurements", International Journal of Mass Spectrometry, vol. 282, no. 3: Elsevier, pp. 108–111, 2009.
Link: http://www.sciencedirect.com/science/article/pii/S1387380609000700
Abstract
The hydroxyl radical (OH) is the most important atmospheric oxidant. Recently Sinha et al. [V. Sinha, J. Williams, J.N. Crowley, J. Lelieveld, Atmos. Chem. Phys. 8 (2008) 2213] developed a new method to measure the total OH reactivity of ambient air (OH sink) employing a proton transfer reaction mass spectrometer (PTR-MS) as a detector. The new method uses pyrrole (C4H4NH) as a reagent and for an OH reactivity measurement this species must be measured under both dry (∼0% RH) and humid air (>30% RH). Here, we investigate the sensitivity dependence of the PTR-MS for pyrrole, as a function of relative humidity in the sampled air. Various normalizations with respect to the H3O+ ion and its different hydrated cluster ions H3O+(H2O)n=1,2,3 are compared. It is shown that both the primary ion signal (H3O+ ion m/z = 19) and the first water cluster ion H3O+(H2O) (m/z = 37) should be used for pyrrole quantification. However, in spite of using this normalization, the PTR-MS sensitivity for pyrrole changes by as much as 16% between dry (∼0% RH) and humid air (above 30% RH), with higher sensitivity when the sampled air is humid. Thus, for accurate quantification of pyrrole using a PTR-MS, calibration factors appropriate to dry and humid air should be employed. We recommend that humidity dependence of the PTR-MS be taken into account when reactivity measurements are performed using the pyrrole based comparative reactivity method (CRM).

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.