Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Filters: Author is Johnson, AM  [Clear All Filters]
2012
[Nolscher2012] Nölscher, AC., J. Williams, V. Sinha, T. Custer, W. Song, AM. Johnson, R. Axinte, H. Bozem, H. Fischer, N. Pouvesle, et al., "Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010", Atmospheric Chemistry and Physics, vol. 12, no. 17: Copernicus GmbH, pp. 8257–8270, 2012.
Link: http://www.atmos-chem-phys.net/12/8257/2012/acp-12-8257-2012.html
Abstract
Ambient total OH reactivity was measured at the Finnish boreal forest station SMEAR II in Hyytiälä (Latitude 61°51' N; Longitude 24°17' E) in July and August 2010 using the Comparative Reactivity Method (CRM). The CRM – total OH reactivity method – is a direct, in-situ determination of the total loss rate of hydroxyl radicals (OH) caused by all reactive species in air. During the intensive field campaign HUMPPA-COPEC 2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study) the total OH reactivity was monitored both inside (18 m) and directly above the forest canopy (24 m) for the first time. The comparison between these two total OH reactivity measurements, absolute values and the temporal variation have been analyzed here. Stable boundary layer conditions during night and turbulent mixing in the daytime induced low and high short-term variability, respectively. The impact on total OH reactivity from biogenic emissions and associated photochemical products was measured under "normal" and "stressed" (i.e. prolonged high temperature) conditions. The advection of biomass burning emissions to the site caused a marked change in the total OH reactivity vertical profile. By comparing the OH reactivity contribution from individually measured compounds and the directly measured total OH reactivity, the size of any unaccounted for or "missing" sink can be deduced for various atmospheric influences. For "normal" boreal conditions a missing OH reactivity of 58%, whereas for "stressed" boreal conditions a missing OH reactivity of 89% was determined. Various sources of not quantified OH reactive species are proposed as possible explanation for the high missing OH reactivity.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.