Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 4 results
Title [ Year(Asc)]
Filters: Author is Herndon, Scott C  [Clear All Filters]
2012
[Knighton2012] W Knighton, B., S. C. Herndon, J. F. Franklin, E. C. Wood, J. Wormhoudt, W. Brooks, E. C. Fortner, and D. T. Allen, "Direct measurement of volatile organic compound emissions from industrial flares using real-time online techniques: Proton Transfer Reaction Mass Spectrometry and Tunable Infrared Laser Differential Absorption Spectroscopy", Industrial & Engineering Chemistry Research, vol. 51, no. 39: ACS Publications, pp. 12674–12684, 2012.
Link: http://pubs.acs.org/doi/abs/10.1021/ie202695v
Abstract
During the 2010 Comprehensive Flare Study a suite of analytical instrumentation was employed to monitor and quantify in real-time the volatile organic compound (VOC) emissions emanating from an industrial chemical process flare burning either propene/natural gas or propane/natural gas. To our knowledge this represents the first time the VOC composition has been directly measured as a function of flare efficiency on an operational full-scale flare. This compositional information was obtained using a suite of proton-transfer-reaction mass spectrometers (PTR-MS) and quantum cascade laser tunable infrared differential absorption spectrometers (QCL-TILDAS) to measure the unburned fuel and associated combustion byproducts. Methane, ethyne, ethene, and formaldehyde were measured using the QC-TILDAS. Propene, acetaldehyde, methanol, benzene, acrolein, and the sum of the C3H6O isomers were measured with the PTR-MS. A second PTR-MS equipped with a gas chromatograph (GC) was operated in parallel and was used to verify the identity of the neutral components that were responsible for producing the ions monitored with the first PTR-MS. Additional components including 1,3-butadiene and C3H4 (propyne or allene) were identified using the GC/PTR-MS. The propene concentrations derived from the PTR-MS were found to agree with measurements made using a conventional GC with a flame ionization detector (FID). The VOC product (excludes fuel components) speciation profile is more dependent on fuel composition, propene versus propane, than on flare type, air-assisted versus steam-assisted, and is essentially constant with respect to combustion efficiency for combustion efficiencies >0.8. Propane flares produce more alkenes with ethene and propene accounting for approximately 80% (per carbon basis) of the VOC combustion product. The propene partial combustion product profile was observed to contain relatively more oxygenated material where formaldehyde and acetaldehyde are major contributors and account for 20 - 25% of VOC product carbon. Steam-assisted flares produce less ethyne and benzene than air-assisted flares. This observation is consistent with the understanding that steam assisted flares are more efficient at reducing soot, which is formed via the same reaction mechanisms that form benzene and ethyne.
2007
[Yelvington2007] Yelvington, P. E., S. C. Herndon, J. C. Wormhoudt, J. T. Jayne, R. C. Miake-Lye, B. W Knighton, and C. Wey, "Chemical speciation of hydrocarbon emissions from a commercial aircraft engine", Journal of Propulsion and Power, vol. 23, no. 5, pp. 912–918, 2007.
Link: http://arc.aiaa.org/doi/abs/10.2514/1.23520
[Knighton2007] Knighton, W. B., T. M. Rogers, B. E. Anderson, S. C. Herndon, P. E. Yelvington, and R. C. Miake-Lye, "Quantification of aircraft engine hydrocarbon emissions using proton transfer reaction mass spectrometry", Journal of Propulsion and Power, vol. 23, no. 5, pp. 949–958, 2007.
Link: http://arc.aiaa.org/doi/abs/10.2514/1.22965
2005
[Herndon2005] Herndon, S. C., J. T. Jayne, M. S. Zahniser, D. R. Worsnop, B. Knighton, E. Alwine, B. K. Lamb, M. Zavala, D. D. Nelson, B. J McManus, et al., "Characterization of urban pollutant emission fluxes and ambient concentration distributions using a mobile laboratory with rapid response instrumentation", Faraday Discussions, vol. 130: Royal Society of Chemistry, pp. 327–339, 2005.
Link: http://pubs.rsc.org/en/content/articlehtml/2005/fd/b500411j
Abstract
A large and increasing fraction of the planet’s population lives in megacities, especially in the developing world. These large metropolitan areas generally have very high levels of both gaseous and particulate air pollutants that have severe impacts on human health, ecosystem viability, and climate on local, regional, and even continental scales. Emissions fluxes and ambient pollutant concentration distributions are generally poorly characterized for large urban areas even in developed nations. Much less is known about pollutant sources and concentration patterns in the faster growing megacities of the developing world. New methods of locating and measuring pollutant emission sources and tracking subsequent atmospheric chemical transformations and distributions are required. Measurement modes utilizing an innovative van based mobile laboratory equipped with a suite of fast response instruments to characterize the complex and “nastier” chemistry of the urban boundary layer are described. Instrumentation and measurement strategies are illustrated with examples from the Mexico City and Boston metropolitan areas. It is shown that fleet average exhaust emission ratios of formaldehyde (HCHO), acetaldehyde (CH3CHO) and benzene (C6H6) are substantial in Mexico City, with gasoline powered vehicles emitting higher levels normalized by fuel consumption. NH3 exhaust emissions from newer light duty vehicles in Mexico City exceed levels from similar traffic in Boston. A mobile conditional sampling air sample collection mode designed to collect samples from intercepted emission plumes for later analysis is also described.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.