Callback Service


The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 1 results
Title [ Year(Asc)]
Filters: Author is Schwarzmann, M  [Clear All Filters]
[Hansel1997] Hansel, A., W. Singer, A. Wisthaler, M. Schwarzmann, and W. Lindinger, "Energy dependencies of the proton transfer reactions H3O++ CH2O CH2OH++ H2O", International journal of mass spectrometry and ion processes, vol. 167: Elsevier, pp. 697–703, 1997.
The proton transfer reaction system View the MathML source has been investigated in both directions as a function of the mean relative kinetic energy, KEcm, between the reactants from 0.05 eV to 1 eV in a selected ion flow drift tube (SIFDT) experiment. The rate constant kf for the forward channel follows closely the calculated collisional limiting value, kc, showing a slightly negative energy dependence. The rate constant, kr, for the reverse channel, which is endoergic by 5.2 kcal mol−1, increases from kr = 2.3 × 10−12 cm3 s−1 at KEcm = 0.05 eV to kr = 2 × 10−10 cm3 s−1 at KEcm = 1 eV. This endoergic reaction is paralleled by an associative channel forming CH2OH+·H2O, which undergoes ligand switching with water molecules to produce H3O+·H2O, yielding a bond energy BE(CH2OH+−H2O) = 27.7 kcal mol−1 in agreement with previous data. The present results are important requisites to monitor the formaldehyde concentrations in air using proton transfer reactionmass spectrometry (PTR-MS).

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.