Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Filters: Author is Sciare, J  [Clear All Filters]
2012
[Dolgorouky2012] Dolgorouky, C., V. Gros, R. Sarda-Esteve, V. Sinha, J. Williams, N. Marchand, S. Sauvage, L. Poulain, J. Sciare, and B. Bonsang, "Total OH reactivity measurements in Paris during the 2010 MEGAPOLI winter campaign", Atmospheric Chemistry and Physics, vol. 12, no. 20: Copernicus GmbH, pp. 9593–9612, 2012.
Link: http://www.atmos-chem-phys.net/12/9593/2012/
Abstract
Hydroxyl radicals play a central role in the troposphere as they control the lifetime of many trace gases. Measurement of OH reactivity (OH loss rate) is important to better constrain the OH budget and also to evaluate the completeness of measured VOC budget. Total atmospheric OH reactivity was measured for the first time in an European Megacity: Paris and its surrounding areas with 12 million inhabitants, during the MEGAPOLI winter campaign 2010. The method deployed was the Comparative Reactivity Method (CRM). The measured dataset contains both measured and calculated OH reactivity from CO, NOx and VOCs measured via PTR-MS, GC-FID and GC-MS instruments. The reactivities observed in Paris covered a range from 10 s−1 to 130 s−1, indicating a large loading of chemical reactants. The present study showed that, when clean marine air masses influenced Paris, the purely local OH reactivity (20 s−1) is well explained by the measured species. Nevertheless, when there is a continental import of air masses, high levels of OH reactivity were obtained (120–130 s−1) and the missing OH reactivity measured in this case jumped to 75%. Using covariations of the missing OH reactivity to secondary inorganic species in fine aerosols, we suggest that the missing OH reactants were most likely highly oxidized compounds issued from photochemically processed air masses of anthropogenic origin.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.