Callback Service


The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Asc)]
Filters: Author is Luca Cappellin  [Clear All Filters]
[1546] Romano, A., L. Fischer, J. Herbig, H. Campbell-Sills, J. Coulon, P. Lucas, L. Cappellin, and F. Biasioli, "Wine analysis by FastGC proton-transfer reaction-time-of-flight-mass spectrometry", International Journal of Mass Spectrometry, vol. 369, pp. 81 - 86, 2014.
<p>Abstract Proton transfer reaction-mass spectrometry (PTR-MS) has successfully been applied to a wide variety of food matrices, nevertheless the reports about the use of PTR-MS in the analysis of alcoholic beverages remain anecdotal. Indeed, due to the presence of ethanol in the sample, PTR-MS can only be employed after dilution of the headspace or at the expense of radical changes in the operational conditions. In the present research work, PTR-ToF-MS was coupled to a prototype FastGC system allowing for a rapid (90&nbsp;s) chromatographic separation of the sample headspace prior to PTR-MS analysis. The system was tested on red wine: the FastGC step allowed to rule out the effect of ethanol, eluted from the column during the first 8&nbsp;s, allowing PTR-MS analysis to be carried out without changing the ionization conditions. Eight French red wines were submitted to analysis and could be separated on the basis of the respective grape variety and region of origin. In comparison to the results obtained by direct injection, FastGC provided additional information, thanks to a less drastic dilution of the sample and due to the chromatographic separation of isomers. This was achieved without increasing duration and complexity of the analysis.</p>
[Cappellin2012b] Cappellin, L., E. Aprea, P. Granitto, R. Wehrens, C. Soukoulis, R. Viola, T. D. Märk, F. Gasperi, and F. Biasioli, "Linking GC-MS and PTR-TOF-MS fingerprints of food samples", Chemometrics and Intelligent Laboratory Systems, vol. 118, pp. 301 - 307, 2012.
Recently the first applications in food science and technology of the newly available volatile organic compound (VOC) detection technique proton transfer reaction�mass spectrometry, coupled with a time of flight mass analyzer (PTR-TOF-MS), have been published. In comparison with standard techniques such as GC-MS, PTR-TOF-MS has the remarkable advantage of being extremely fast but has the drawback that compound identification is more challenging and often not possible without further information. In order to better exploit and understand the analytical information entangled in the PTR-TOF-MS fingerprint and to link it with SPME/GC-MS analyses we employed two multivariate calibration methods, \{PLS\} and the more recent LASSO. We show that, while in some cases it is sufficient to consider a single PTR-TOF-MS peak in order to predict the intensity of a SPME/GC-MS peak, in general a multivariate approach is needed. We compare the performances of \{PLS\} and \{LASSO\} in terms of prediction capabilities and interpretability of the model coefficients and conclude that \{LASSO\} is more suitable for this problem. As case study, we compared \{GC\} and PTR-MS data for different matrices, namely olive oil and grana cheese.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.