Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Desc)]
Filters: Author is {De Gouw}, Joost A.  [Clear All Filters]
2003
[Warneke2003] Warneke, C., J. A. { De Gouw}, W. C. Kuster, P. D. Goldan, and R. Fall, "Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method.", Environ Sci Technol, vol. 37, no. 11: National Oceanic and Atmospheric Administration, Aeronomy Laboratory, 325 Broadway, Boulder, Colorado 80305, USA. cwarneke@al.noaa.gov, pp. 2494–2501, Jun, 2003.
Link: http://pubs.acs.org/doi/abs/10.1021/es026266i
Abstract
Proton-transfer-reaction mass spectrometry (PTR-MS) has emerged as a useful tool to study volatile organic compounds (VOCs) in the atmosphere. In PTR-MS, proton-transfer reactions with H30+ ions are used to ionize and measure VOCs in air with a high sensitivity and fast time response. Only the masses of the ionized VOCs and their fragments, if any, are determined, and these product ions are not unique indicators of VOC identities. Here, a combination of gas chromatography and PTR-MS (GC-PTR-MS) is used to validate the measurements by PTR-MS of a number of common atmospheric VOCs. We have analyzed 75 VOCs contained in standard mixtures by GC-PTR-MS, which allowed detected masses to be unambiguously related to a specific compound. The calibration factors for PTR-MS and GC-PTR-MS were compared and showed that the loss of VOCs in the sample acquisition and GC system is small. GC-PTR-MS analyses of 56 air samples from an urban site were used to address the specificity of PTR-MS in complex air masses. It is demonstrated that the ions associated with methanol, acetonitrile, acetaldehyde, acetone, benzene, toluene, and higher aromatic VOCs are free from significant interference. A quantitative intercomparison between PTR-MS and GC-PTR-MS measurements of the aforementioned VOCs was performed and shows that they are accurately measured by PTR-MS.
2005
[Warneke2005] Warneke, C., S. Kato, J. A. { De Gouw}, P. D. Goldan, W. C. Kuster, M. Shao, E. R. Lovejoy, R. Fall, and F. C. Fehsenfeld, "Online volatile organic compound measurements using a newly developed proton-transfer ion-trap mass spectrometry instrument during New England Air Quality Study–Intercontinental Transport and Chemical Transformation 2004: performance, intercomparison, a", Environ Sci Technol, vol. 39, no. 14: National Oceanic and Atmospheric Administration, Aeronomy Laboratory, 325 Broadway, Boulder, Colorado 80305, USA. Carsten.Warneke@noaa.gov, pp. 5390–5397, Jul, 2005.
Link: http://pubs.acs.org/doi/abs/10.1021/es050602o
Abstract
We have used a newly developed proton-transfer ion-trap mass spectrometry (PIT-MS) instrument for online trace gas analysis of volatile organic compounds (VOCs) during the 2004 New England Air Quality Study-Intercontinental Transport and Chemical Transformation study. The PIT-MS instrument uses proton-transfer reactions with H3O+ ions to ionize VOCs, similarto a PTR-MS (proton-transfer reaction mass spectrometry) instrument but uses an ion trap mass spectrometer to analyze the product ions. The advantages of an ion trap are the improved identification of VOCs and a near 100% duty cycle. During the experiment, the PIT-MS instrument had a detection limit between 0.05 and 0.3 pbbv (S/N = 3 (signal-to-noise ratio)) for 2-min integration time for most tested VOCs. PIT-MS was used for ambient air measurements onboard a research ship and agreed well with a gas chromatography mass spectrometer). The comparison included oxygenated VOCs, aromatic compounds, and others such as isoprene, monoterpenes, acetonitrile, and dimethyl sulfide. Automated collision-induced dissociation measurements were used to determine the contributions of acetone and propanal to the measured signal at 59 amu; both species are detected at this mass and are thus indistinguishable in conventional PTR-MS.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.