Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 8 results
[ Title(Desc)] Year
Filters: Author is Lanza, Matteo  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
[Sulzer2013a] Sulzer, P., B. Agarwal, S. Juerschik, M. Lanza, A. Jordan, E. Hartungen, G. Hanel, L. Märk, T. D. Märk, R. González-Méndez, et al., "Applications of switching reagent ions in proton transfer reaction mass spectrometric instruments for the improved selectivity of explosive compounds", International Journal of Mass Spectrometry, vol. 354–355: Elsevier, 2013.
Link: http://www.sciencedirect.com/science/article/pii/S1387380613001735
Abstract
<p>Here we demonstrate the use of a switchable reagent ion proton transfer reaction mass spectrometry (SRI-PTR-MS) instrument to improve the instrument&#39;s selectivity for the detection of the explosive compounds 2,4,6 trinitrotoluene (TNT), 1,3,5 trinitrobenzene (TNB), pentaerythritol tetranitrate (PETN), and cyclotrimethylenetrinitramine (RDX). Selectivity is improved owing to the production of different product ions resulting from changes in the reagent ion-molecule chemistry. To be of use as an analytical tool for homeland security applications, it is important that the reagent ions (and hence product ions) can be rapidly changed (within seconds) from H3O+ to another dominant ion species if the technology is to be acceptable. This paper presents measurements that show how it is possible to rapidly switch the reagent ion from H3O+ to either O2+ or NO+ to enhance selectivity for the detection of the four explosives named above. That switching reagent ions can be done quickly results from the fact that the recombination energies of O2+ and NO+ are less than the ionisation potential of H2O, i.e. charge transfer cannot occur which otherwise would result in ions that can react efficiently with water (e.g. H2O+ + H2O &rarr; H3O+ + OH) leading to H3O+ becoming the dominant reagent ion. Reaction processes observed are non-dissociative charge transfer (O2+ with TNT and TNB), dissociative charge transfer (O2+ with TNT) and adduct formation (NO+ with PETN and RDX). O2+ is found to be unreactive with PETN and RDX, and under the conditions operating in the reaction region of the PTR-MS only a low signal associated with NO+&middot;TNT was observed. No NO+&middot;TNB was detected.</p>
D
[Sulzer2013] Sulzer, P., T. Kassebacher, S. Juerschik, M. Lanza, E. Hartungen, A. Jordan, A. Edtbauer, S. Feil, G. Hanel, J1. L. S Maerk, et al., "Detection of Toxic Industrial Compounds (TIC) with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for a real-life monitoring scenario", CONFERENCE SERIES, pp. 196, 2013.
Link: http://www.ionicon.com/sites/default/files/uploads/doc/contributions_ptr_ms_Conference_6.pdf
[Lanza2013] Lanza, M., J. W. Acton, S. Jürschik, P. Sulzer, K. Breiev, A. Jordan, E. Hartungen, G. Hanel, L. Märk, C. A. Mayhew, et al., "Distinguishing two isomeric mephedrone substitutes with selective reagent ionisation mass spectrometry (SRI-MS)", Journal of Mass Spectrometry, vol. 48, no. 9, pp. 1015–1018, 2013.
Link: http://dx.doi.org/10.1002/jms.3253
Abstract
The isomers 4-methylethcathinone and N-ethylbuphedrone are substitutes for the recently banned drug mephedrone. We find that with conventional proton transfer reaction mass spectrometry (PTR-MS), it is not possible to distinguish between these two isomers, because essentially for both substances, only the protonated molecules are observed at a mass-to-charge ratio of 192 (C12H18NO+). However, when utilising an advanced PTR-MS instrument that allows us to switch the reagent ions (selective reagent ionisation) from H3O+ (which is commonly used in PTR-MS) to NO+, O2+ and Kr+, characteristic product (fragment) ions are detected: C4H10N+ (72 Da) for 4-methylethcathinone and C5H12N+ (86 Da) for N-ethylbuphedrone; thus, selective reagent ionisation MS proves to be a powerful tool for fast detection and identification of these compounds. Copyright © 2013 John Wiley & Sons, Ltd.
H
[1642] W Acton, J., M. Lanza, B. Agarwal, S. Jürschik, P. Sulzer, K. Breiev, A. Jordan, E. Hartungen, G. Hanel, L. Märk, et al., "Headspace analysis of new psychoactive substances using a Selective Reagent Ionisation-Time of Flight-Mass Spectrometer.", Int J Mass Spectrom, vol. 360, pp. 28–38, Mar, 2014.
Link: http://dx.doi.org/10.1016/j.ijms.2013.12.009
Abstract
<p>The rapid expansion in the number and use of new psychoactive substances presents a significant analytical challenge because highly sensitive instrumentation capable of detecting a broad range of chemical compounds in real-time with a low rate of false positives is required. A Selective Reagent Ionisation-Time of Flight-Mass Spectrometry (SRI-ToF-MS) instrument is capable of meeting all of these requirements. With its high mass resolution (up to m/Δm of 8000), the application of variations in reduced electric field strength (E/N) and use of different reagent ions, the ambiguity of a nominal (monoisotopic) m/z is reduced and hence the identification of chemicals in a complex chemical environment with a high level of confidence is enabled. In this study we report the use of a SRI-ToF-MS instrument to investigate the reactions of H3O(+), O2 (+), NO(+) and Kr(+) with 10 readily available (at the time of purchase) new psychoactive substances, namely 4-fluoroamphetamine, methiopropamine, ethcathinone, 4-methylethcathinone, N-ethylbuphedrone, ethylphenidate, 5-MeO-DALT, dimethocaine, 5-(2-aminopropyl)benzofuran and nitracaine. In particular, the dependence of product ion branching ratios on the reduced electric field strength for all reagent ions was investigated and is reported here. The results reported represent a significant amount of new data which will be of use for the development of drug detection techniques suitable for real world scenarios.</p>
M
[1655] Materic, D., M. Lanza, P. Sulzer, J. Herbig, D. Bruhn, C. Turner, N. Mason, and V. Gauci, "Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC", Analytical and Bioanalytical Chemistry, Aug, 2015.
Link: http://dx.doi.org/10.1007/s00216-015-8942-5
Abstract
<p>Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection &lt;1 pptv and the response times of approximately 100 ms), the selectivity of PTR-MS is still somewhat limited, as isomers cannot be separated. Recently, selectivity-enhancing measures, such as manipulation of drift tube parameters (reduced electric field strength) and using primary ions other than H3O+, such as NO+ and O2 +, have been introduced. However, monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research&mdash;PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.</p>
[1711] Materic, D., M. Lanza, P. Sulzer, J. Herbig, D. Bruhn, C. Turner, N. Mason, and V. Gauci, "Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC.", Anal Bioanal Chem, vol. 407, pp. 7757–7763, Oct, 2015.
Link: http://dx.doi.org/10.1007/s00216-015-8942-5
Abstract
<p>Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection &lt;1 pptv and the response times of approximately 100 ms), the selectivity of PTR-MS is still somewhat limited, as isomers cannot be separated. Recently, selectivity-enhancing measures, such as manipulation of drift tube parameters (reduced electric field strength) and using primary ions other than H3O(+), such as NO(+) and O2 (+), have been introduced. However, monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.</p>
S
[1576] Lanza, M., J. W. Acton, P. Sulzer, K. Breiev, S. Juerschik, A. Jordan, E. Hartungen, G. Hanel, L. Maerk, T. D. Maerk, et al., "Selective reagent ionisation-time of flight-mass spectrometry: a rapid technology for the novel analysis of blends of new psychoactive substances", Journal of Mass Spectrometry, vol. 50, pp. 427–431, 2015.
Link: http://dx.doi.org/10.1002/jms.3514
Abstract
In this study we demonstrate the potential of selective reagent ionisation-time of flight-mass spectrometry for the rapid and selective identification of a popular new psychoactive substance blend called ‘synthacaine’, a mixture that is supposed to imitate the sensory and intoxicating effects of cocaine. Reactions with H3O+ result in protonated parent molecules which can be tentatively assigned to benzocaine and methiopropamine. However, by comparing the product ion branching ratios obtained at two reduced electric field values (90 and 170 Td) for two reagent ions (H3O+ and NO+) to those of the pure chemicals, we show that identification is possible with a much higher level of confidence then when relying solely on the m/z of protonated parent molecules. A rapid and highly selective analytical identification of the constituents of a recreational drug is particularly crucial to medical personnel for the prompt medical treatment of overdoses, toxic effects or allergic reactions. Copyright © 2015 John Wiley & Sons, Ltd.
[1638] Lanza, M., J. W Acton, P. Sulzer, K. Breiev, S. Jürschik, A. Jordan, E. Hartungen, G. Hanel, L. Märk, T. D. Märk, et al., "Selective reagent ionisation-time of flight-mass spectrometry: a rapid technology for the novel analysis of blends of new psychoactive substances.", J Mass Spectrom, vol. 50, pp. 427–431, Feb, 2015.
Link: http://dx.doi.org/10.1002/jms.3514
Abstract
<p>In this study we demonstrate the potential of selective reagent ionisation-time of flight-mass spectrometry for the rapid and selective identification of a popular new psychoactive substance blend called &#39;synthacaine&#39;, a mixture that is supposed to imitate the sensory and intoxicating effects of cocaine. Reactions with H3O(+) result in protonated parent molecules which can be tentatively assigned to benzocaine and methiopropamine. However, by comparing the product ion branching ratios obtained at two reduced electric field values (90 and 170 Td) for two reagent ions (H3O(+) and NO(+)) to those of the pure chemicals, we show that identification is possible with a much higher level of confidence then when relying solely on the m/z of protonated parent molecules. A rapid and highly selective analytical identification of the constituents of a recreational drug is particularly crucial to medical personnel for the prompt medical treatment of overdoses, toxic effects or allergic reactions.</p>

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.