Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 3 results
Title [ Year(Asc)]
Filters: Author is Goldan, Paul  [Clear All Filters]
2004
[Steeghs2004] Steeghs, M., H. Pal Bais, J. { de Gouw}, P. Goldan, W. Kuster, M. Northway, R. Fall, and J. M. Vivanco, "Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis.", Plant Physiol, vol. 135, no. 1: Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA., pp. 47–58, May, 2004.
Link: http://dx.doi.org/10.1104/pp.104.038703
Abstract
Plant roots release about 5% to 20% of all photosynthetically-fixed carbon, and as a result create a carbon-rich environment for numerous rhizosphere organisms, including plant pathogens and symbiotic microbes. Although some characterization of root exudates has been achieved, especially of secondary metabolites and proteins, much less is known about volatile organic compounds (VOCs) released by roots. In this communication, we describe a novel approach to exploring these rhizosphere VOCs and their induction by biotic stresses. The VOC formation of Arabidopsis roots was analyzed using proton-transfer-reaction mass spectrometry (PTR-MS), a new technology that allows rapid and real time analysis of most biogenic VOCs without preconcentration or chromatography. Our studies revealed that the major VOCs released and identified by both PTR-MS and gas chromatography-mass spectrometry were either simple metabolites, ethanol, acetaldehyde, acetic acid, ethyl acetate, 2-butanone, 2,3,-butanedione, and acetone, or the monoterpene, 1,8-cineole. Some VOCs were found to be produced constitutively regardless of the treatment; other VOCs were induced specifically as a result of different compatible and noncompatible interactions between microbes and insects and Arabidopsis roots. Compatible interactions of Pseudomonas syringae DC3000 and Diuraphis noxia with Arabidopsis roots resulted in the rapid release of 1,8-cineole, a monoterpene that has not been previously reported in Arabidopsis. Mechanical injuries to Arabidopsis roots did not produce 1,8-cineole nor any C6 wound-VOCs; compatible interactions between Arabidopsis roots and Diuraphis noxia did not produce any wound compounds. This suggests that Arabidopsis roots respond to wounding differently from above-ground plant organs. Trials with incompatible interactions did not reveal a set of compounds that was significantly different compared to the noninfected roots. The PTR-MS method may open the way for functional root VOC analysis that will complement genomic investigations in Arabidopsis.
2003
[Hawes2003] Hawes, A. K., S. Solomon, R. W. Portmann, J. S. Daniel, A. O. Langford, LR. H Miller, C. S. Eubank, P. Goldan, C. Wiedinmyer, E. Atlas, et al., "Airborne observations of vegetation and implications for biogenic emission characterization", Journal of Environmental Monitoring, vol. 5, no. 6: Royal Society of Chemistry, pp. 977–983, 2003.
Link: http://pubs.rsc.org/en/content/articlehtml/2003/em/b308911h
Abstract
Measuring hydrocarbons from aircraft represents one way to infer biogenic emissions at the surface. The focus of this paper is to show that complementary remote sensing information can be provided by optical measurements of a vegetation index, which is readily measured with high temporal coverage using reflectance data. We examine the similarities between the vegetation index and in situ measurements of the chemicals isoprene, methacrolein, and alpha-pinene to estimate whether the temporal behavior of the in situ measurements of these chemicals could be better understood by the addition of the vegetation index. Data were compared for flights conducted around Houston in August and September 2000. The three independent sets of chemical measurements examined correspond reasonably well with the vegetation index curves for the majority of flight days. While low values of the vegetation index always correspond to low values of the in situ chemical measurements, high values of the index correspond to both high and low values of the chemical measurements. In this sense it represents an upper limit when compared with in situ data (assuming the calibration constant is adequately chosen). This result suggests that while the vegetation index cannot represent a purely predictive quantity for the in situ measurements, it represents a complementary measurement that can be useful in understanding comparisons of various in situ observations, particularly when these observations occur with relatively low temporal frequency. In situ isoprene measurements and the vegetation index were also compared to an isoprene emission inventory to provide additional insight on broad issues relating to the use of vegetation indices in emission database development.
[Karl2003a] Karl, T., T. Jobson, W. C. Kuster, E. Williams, J. Stutz, R. Shetter, S. R. Hall, P. Goldan, F. Fehsenfeld, and W. Lindinger, "Use of proton-transfer-reaction mass spectrometry to characterize volatile organic compound sources at the La Porte super site during the Texas Air Quality Study 2000", Journal of geophysical research, vol. 108, no. D16: American Geophysical Union, pp. 4508, 2003.
Link: http://www.agu.org/pubs/crossref/2003/2002JD003333.shtml
Abstract
Proton-transfer-reaction mass spectrometry (PTR-MS) was deployed for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Overall, 28 ions dominated the PTR-MS mass spectra and were assigned as anthropogenic aromatics (e.g., benzene, toluene, xylenes) and hydrocarbons (propene, isoprene), oxygenated compounds (e.g., formaldehyde, acetaldehyde, acetone, methanol, C7 carbonyls), and three nitrogen-containing compounds (e.g., HCN, acetonitrile and acrylonitrile). Biogenic VOCs were minor components at this site. Propene was the most abundant lightweight hydrocarbon detected by this technique with concentrations up to 100+ nmol mol−1, and was highly correlated with its oxidation products, formaldehyde (up to ∼40 nmol mol−1) and acetaldehyde (up to ∼80 nmol/mol), with typical ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained data set helped in identifying different anthropogenic sources (e.g., industrial from urban emissions) and testing current emission inventories. A comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by “soft” chemical ionization using proton-transfer via H3O+. The method was especially valuable in monitoring rapidly changing VOC plumes which passed over the site, and when coupled with meteorological data it was possible to identify likely sources.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.