Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 1 results
Title [ Year(Asc)]
Filters: Author is Zhang, Guoqiang  [Clear All Filters]
2011
[Saha2011] Saha, C. Kumer, A. Feilberg, G. Zhang, and A. Peter S. Adamsen, "Effects of airflow on odorants' emissions in a model pig house - A laboratory study using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS).", Sci Total Environ, vol. 410-411: Department of Engineering, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark. cksahabau@yahoo.com, pp. 161–171, Dec, 2011.
Link: http://dx.doi.org/10.1016/j.scitotenv.2011.09.017
Abstract
Identification of different factors that affect emissions of gasses, including volatile organic compounds (VOCs) is necessary to develop emission abatement technology. The objectives of this research were to quantify and study temporal variation of gas emissions from a model pig house under varying ventilation rates. The used model was a 1:12.5 scale of a section of a commercial finishing pig house. The VOC concentrations at inlet, outlet, and slurry pit of the model space were measured using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). PTR-MS can measure the temporal variations of odor compounds' emission from the slurry pit in real time. The emissions of H(2)S and 14 VOCs were lower compared to real pig buildings except for ammonia, which indicated possible other sources of those compounds than the slurry in the slurry pit. The ventilation rate affected significantly on ammonia and trimethylamine emission (p<0.05). The hydrogen sulfide (H(2)S) emission was independent of the ventilation rate. VFAs' emission dependency on ventilation rate increased with the increase of carbon chain. Phenols, indoles and ketones showed the positive correlation with ventilation rate to some extent. Generally, compounds with high solubility (low Henry's constant) showed stronger correlation with ventilation rates than the compounds with high Henry's constant.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.