Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 3 results
Title [ Year(Asc)]
Filters: Author is Roberts, James M  [Clear All Filters]
2010
[Roberts2010] Roberts, J. M., P. Veres, C. Warneke, JA. Neuman, RA. Washenfelder, SS. Brown, M. Baasandorj, JB. Burkholder, IR. Burling, T. J. Johnson, et al., "Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions, Atmos", Meas. Tech, vol. 3, no. 4, pp. 981–990, 2010.
Link: http://www.atmos-meas-tech-discuss.net/3/301/2010/amtd-3-301-2010.html
Abstract
A negative-ion proton transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO), nitric (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be intrinsically sensitive (6–16 cts/pptv), but prone to inlet effects for HNO3 and HCl. The ion chemistry was found to be insensitive to water vapor concentrations, in agreement with previous studies of carboxylic acids. The inlet equilibration times for HNCO and HONO were 2 to 4 s, allowing for measurement in biomass burning studies. Several potential interferences in HONO measurements were examined: decomposition of HNO3·NO3- clusters within the CIMS, and NO2-water production on inlet surfaces, and were quite minor (≤1%, 3.3%, respectively). The detection limits of the method were limited by the instrument backgrounds in the ion source and flow tube, and were estimated to range between 16 and 50 pptv (parts per trillion by volume) for a 1 min average. The comparison of HONO measured by CIMS and by in situ FTIR showed good correlation and agreement to within 17%. The method provided rapid and accurate measurements of HNCO and HONO in controlled biomass burning studies, in which both acids were seen to be important products.
[Veres2010] Veres, P., J. M. Roberts, I. R. Burling, C. Warneke, J. de Gouw, and R. J. Yokelson, "Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry", Journal of Geophysical Research, vol. 115, no. D23: American Geophysical Union, pp. D23302, 2010.
Link: http://www.agu.org/pubs/crossref/2010/2010JD014033.shtml
Abstract
Emissions from 34 laboratory biomass fires were investigated at the combustion facility of the U.S. Department of Agriculture Fire Sciences Laboratory in Missoula, Montana. Gas-phase organic and inorganic acids were quantified using negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), open-path Fourier transform infrared spectroscopy (OP-FTIR), and proton-transfer-reaction mass spectrometry (PTR-MS). NI-PT-CIMS is a novel technique that measures the mass-to-charge ratio (m/z) of ions generated from reactions of acetate (CH3C(O)O−) ions with inorganic and organic acids. The emission ratios for various important reactive acids with respect to CO were determined. Emission ratios for isocyanic acid (HNCO), 1,2 and 1,3-benzenediols (catechol, resorcinol), nitrous acid (HONO), acrylic acid, methacrylic acid, propionic acid, formic acid, pyruvic acid, and glycolic acid were measured from biomass burning. Our measurements show that there is a significant amount of HONO in fresh smoke. The NI-PT-CIMS measurements were validated by comparison with OP-FTIR measurements of HONO and formic acid (HCOOH) and with PTR-MS measurements of HCOOH.
2008
[Veres2008] Veres, P., J. M. Roberts, C. Warneke, D. Welsh-Bon, M. Zahniser, S. Herndon, R. Fall, and J. de Gouw, "Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere", International Journal of Mass Spectrometry, vol. 274, no. 1: Elsevier, pp. 48–55, 2008.
Link: http://www.sciencedirect.com/science/article/pii/S1387380608001711
Abstract
We have developed a negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) technique for on-line analysis of gaseous organic and inorganic acids. In this detection scheme, acetate ions (CH3C(O)O−) react very selectively with atmospheric trace acids, by proton transfer, to produce unique product ion species. We tested this ion chemistry for 11 species of which only four showed measurable fragmentation. We investigated both the time response of the inlet and humidity dependence for both formic acid and pyruvic acid measurements. A formic acid calibration was performed and found a sensitivity of 21 ± 4.3 counts per second per pptv. Formic acid measurements made during two separate informal ambient air intercomparisons: (1) with a quantum cascade IR laser absorption system (QCL) and (2) a proton-transfer reaction mass spectrometer (PTR-MS) show good agreement validating this measurement technique. The measurements of the NI-PT-CIMS and PTR-MS agree to within 5% with a high degree of correlation (r2 > 0.93). We have found the NI-PT-CIMS detection limit for formic acid is approximately 80–90 pptv for a 1 s integration period, and is currently limited by the formate background in the instrument. The fast time response and high sensitivity of the NI-PT-CIMS method make it a promising technique for the measurement of organic acids in ambient conditions.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.