Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: Author is Alexander, Michael  [Clear All Filters]
2003
[Alexander2003] Alexander, M., E. Boscaini, W. Lindinger, and T. D. Märk, "Membrane introduction proton-transfer reaction mass spectrometry", International Journal of Mass Spectrometry, vol. 223: Elsevier, pp. 763–770, 2003.
Link: http://www.sciencedirect.com/science/article/pii/S1387380602009648
Abstract
The combination of membrane introduction mass spectrometry (MIMS) and proton-transfer reaction mass spectrometry (PTR-MS) is explored. The PTR-MS is used to measure properties of a well-characterized membrane material, poly-dimethylsiloxane (PDMS). It is found that the ability of the PTR-MS to measure absolute concentrations in real-time makes it an ideal tool for the characterization of membrane properties and the interaction of the membrane with multiple organic species. Values for the diffusion coefficients of several molecules are measured and found to be in agreement with literature values. Time modulation of the analyte across the membrane is explored as a method of resolving isobaric interferences for different chemical species. This is demonstrated for acetone and propanal. Finally, the benefit of combining MIMS with PTR-MS is demonstrated by the direct analysis of organic species in the headspace of a hot water solution where the high humidity would not allow analysis using the PTR-MS alone.
[Prazeller2003] Prazeller, P., P. T. Palmer, E. Boscaini, T. Jobson, and M. Alexander, "Proton transfer reaction ion trap mass spectrometer", Rapid communications in mass spectrometry, vol. 17, no. 14: Wiley Online Library, pp. 1593–1599, 2003.
Link: http://onlinelibrary.wiley.com/doi/10.1002/rcm.1088/full
Abstract
Proton transfer reaction mass spectrometry is a relatively new field that has attracted a great deal of interest in the last few years. This technique uses H3O+ as a chemical ionization (CI) reagent to measure volatile organic compounds (VOCs) in the parts per billion by volume (ppbv) to parts per trillion by volume (pptv) range. Mass spectra acquired with a proton transfer reaction mass spectrometer (PTR-MS) are simple because proton transfer chemical ionization is ‘soft’ and results in little or no fragmentation. Unfortunately, peak identification can still be difficult due to isobaric interferences. A possible solution to this problem is to couple the PTR drift tube to an ion trap mass spectrometer (ITMS). The use of an ITMS is appealing because of its ability to perform MS/MS and possibly distinguish between isomers and other isobars. Additionally, the ITMS duty cycle is much higher than that of a linear quadrupole so faster data acquisition rates are possible that will allow for detection of multiple compounds. Here we present the first results from a proton transfer reaction ion trap mass spectrometer (PTR-ITMS). The aim of this study was to investigate ion injection and storage efficiency of a simple prototype instrument in order to estimate possible detection limits of a second-generation instrument. Using this prototype a detection limit of 100 ppbv was demonstrated. Modifications are suggested that will enable further reduction in detection limits to the low-ppbv to high-pptv range. Furthermore, the applicability of MS/MS in differentiating between isobaric species was determined. MS/MS spectra of the isobaric compounds methyl vinyl ketone (MVK) and methacrolein (MACR) are presented and show fragments of different mass making differentiation possible, even when a mixture of both species is present in the same sample. However, MS/MS spectra of acetone and propanal produce fragments with the same molecular masses but with different intensity ratios. This allows quantitative distinction only if one species is predominant. Fragmentation mechanisms are proposed to explain the results.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.