Callback Service


The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 2 results
Title [ Year(Asc)]
Filters: Author is Helmig, Detlev  [Clear All Filters]
[1625] Hu, L., D. B. Millet, M. Baasandorj, T. J. Griffis, P. Turner, D. Helmig, A. J. Curtis, and J. Hueber, "Isoprene emissions and impacts over an ecological transition region in the US Upper Midwest inferred from tall tower measurements", Journal of Geophysical Research: Atmospheres, Mar, 2015.
<p>We present one year of in-situ PTR-MS measurements of isoprene and its oxidation products MVK and MACR from a 244 m tall tower in the US Upper Midwest, located at an ecological transition between isoprene-emitting deciduous forest and predominantly non-isoprene-emitting agricultural landscapes. We find that anthropogenic interferences (or anthropogenic isoprene) contribute on average 20% of the PTR-MS m/z 69 signal during summer daytime, whereas MVK+MACR interferences (m/z 71) are minor (7%). After removing these interferences, the observed isoprene and MVK+MACR abundances show pronounced seasonal cycles, reaching summertime maxima of &gt;2500 pptv (1-hour mean). The tall tower is impacted both by nearby and more distant regional isoprene sources, with daytime enhancements of isoprene (but little MVK+MACR) under southwest winds, and enhancements of MVK+MACR (but little isoprene) at other times. We find that the GEOS-Chem atmospheric model with the MEGANv2.1 biogenic inventory can reproduce the isoprene observations to within model uncertainty given improved land cover and temperature estimates. However, a 60% low model bias in MVK+MACR cannot be resolved, even across diverse model assumptions for NOx emissions, chemistry, atmospheric mixing, dry deposition, land cover, and potential measurement interferences. This implies that, while isoprene emissions in the immediate vicinity of the tall tower are adequately captured, they are underestimated across the broader region. We show that this region experiences a strong seasonal shift between VOC-limited chemistry during the spring and fall and NOx-limited or transitional chemistry during the summer, driven by the spatiotemporal distribution of isoprene emissions. Isoprene&#39;s role in causing these chemical shifts is likely underestimated due to the underprediction of its regional emissions.</p>
[Kim2009] Kim, S., T. Karl, I. Herdlinger, D. Helmig, R. Rasmussen, R. Daly, and A. Guenther, "Laboratory and Field Measurements of Sesquiterpenes by PTRMS", CONFERENCE SERIES, pp. 116, 2009.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.