Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 4 results
Title [ Year(Desc)]
Filters: Author is Kamysek, Svend  [Clear All Filters]
2011
[Kamysek2011] Kamysek, S., P. Fuchs, H. Schwoebel, J. P. Roesner, S. Kischkel, K. Wolter, C. Loeseken, J. K. Schubert, and W. Miekisch, "Drug detection in breath: effects of pulmonary blood flow and cardiac output on propofol exhalation.", Anal Bioanal Chem, vol. 401, no. 7: Department of Anesthesiology and Intensive Care, University of Rostock, Schillingallee 35, 18057 Rostock, Germany., pp. 2093–2102, Oct, 2011.
Link: http://dx.doi.org/10.1007/s00216-011-5099-8
Abstract
Breath analysis could offer a non-invasive means of intravenous drug monitoring if robust correlations between drug concentrations in breath and blood can be established. In this study, propofol blood and breath concentrations were determined in an animal model under varying physiological conditions. Propofol concentrations in breath were determined by means of two independently calibrated analytical methods: continuous, real-time proton transfer reaction mass spectrometry (PTR-MS) and discontinuous solid-phase micro-extraction coupled with gas chromatography mass spectrometry (SPME-GC-MS). Blood concentrations were determined by means of SPME-GC-MS. Effects of changes in pulmonary blood flow resulting in a decreased cardiac output (CO) and effects of dobutamine administration resulting in an increased CO on propofol breath concentrations and on the correlation between propofol blood and breath concentrations were investigated in seven acutely instrumented pigs. Discontinuous propofol determination in breath by means of alveolar sampling and SPME-GC-MS showed good agreement (R(2)=0.959) with continuous alveolar real-time measurement by means of PTR-MS. In all investigated animals, increasing cardiac output led to a deterioration of the relationship between breath and blood propofol concentrations (R(2)=0.783 for gas chromatography-mass spectrometry and R(2)=0.795 for PTR-MS). Decreasing pulmonary blood flow and cardiac output through banding of the pulmonary artery did not significantly affect the relationship between propofol breath and blood concentrations (R(2)>0.90). Estimation of propofol blood concentrations from exhaled alveolar concentrations seems possible by means of different analytical methods even when cardiac output is decreased. Increases in cardiac output preclude prediction of blood propofol concentration from exhaled concentrations.
2013
[1699] Trefz, P., M. Schmidt, P. Oertel, J. Obermeier, B. Brock, S. Kamysek, J. Dunkl, R. Zimmermann, J. K. Schubert, and W. Miekisch, "Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry.", Anal Chem, vol. 85, pp. 10321–10329, Nov, 2013.
Link: http://dx.doi.org/10.1021/ac402298v
Abstract
<p>Analysis of volatile organic compounds (VOCs) in breath holds great promise for noninvasive diagnostic applications. However, concentrations of VOCs in breath may change quickly, and actual and previous uptakes of exogenous substances, especially in the clinical environment, represent crucial issues. We therefore adapted proton-transfer-reaction-time-of-flight-mass spectrometry for real time breath analysis in the clinical environment. For reasons of medical safety, a 6 m long heated silcosteel transfer line connected to a sterile mouth piece was used for breath sampling from spontaneously breathing volunteers and mechanically ventilated patients. A time resolution of 200 ms was applied. Breath from mechanically ventilated patients was analyzed immediately after cardiac surgery. Breath from 32 members of staff was analyzed in the post anesthetic care unit (PACU). In parallel, room air was measured continuously over 7 days. Detection limits for breath-resolved real time measurements were in the high pptV/low ppbV range. Assignment of signals to alveolar or inspiratory phases was done automatically by a matlab-based algorithm. Quickly and abruptly occurring changes of patients&#39; clinical status could be monitored in terms of breath-to-breath variations of VOC (e.g. isoprene) concentrations. In the PACU, room air concentrations mirrored occupancy. Exhaled concentrations of sevoflurane strongly depended on background concentrations in all participants. In combination with an optimized inlet system, the high time and mass resolution of PTR-ToF-MS provides optimal conditions to trace quick changes of breath VOC profiles and to assess effects from the clinical environment.</p>
2015
[1715] Sukul, P., P. Trefz, S. Kamysek, J. K. Schubert, and W. Miekisch, "Instant effects of changing body positions on compositions of exhaled breath.", J Breath Res, vol. 9, pp. 047105, Dec, 2015.
Link: http://dx.doi.org/10.1088/1752-7155/9/4/047105
Abstract
<p>Concentrations of exhaled volatile organic compounds (VOCs) may depend not only on biochemical or pathologic processes but also on physiological parameters. As breath sampling may be done in different body positions, effects of the sampling position on exhaled VOC concentrations were investigated by means of real-time mass spectrometry. Breaths from 15 healthy volunteers were analyzed in real-time by PTR-ToF-MS-8000 during paced breathing (12/min) in a continuous side-stream mode. We applied two series of body positions (setup 1: sitting, standing, supine, and sitting; setup 2: supine, left lateral, right lateral, prone, and supine). Each position was held for 2&thinsp;min. Breath VOCs were quantified in inspired and alveolar air by means of a custom-made algorithm. Parallel monitoring of hemodynamics and capnometry was performed noninvasively. In setup 1, when compared to the initial sitting position, normalized mean concentrations of isoprene, furan, and acetonitrile decreased by 24%, 26%, and 9%, respectively, during standing and increased by 63%, 36%, and 10% during lying mirroring time profiles of stroke volume and pET-CO2. In contrast, acetone and H2S concentrations remained almost constant. In setup 2, when compared to the initial supine position, mean alveolar concentrations of isoprene and furan increased significantly up to 29% and 16%, respectively, when position was changed from lying on the right side to the prone position. As cardiac output and stroke volume decreased at that time, the reasons for the observed concentrations changes have to be linked to the ventilation/perfusion ratio or compartmental distribution rather than to perfusion alone. During final postures, all VOC concentrations, hemodynamics, and pET-CO2 returned to baseline. Exhaled blood-borne VOC profiles changed due to body postures. Changes depended on cardiac stroke volume, origin, compartmental distribution and physico-chemical properties of the substances. Patients&#39; positions and cardiac output have to be controlled when concentrations of breath VOCs are to be interpreted in terms of biomarkers.</p>
2016
[1735] Sukul, P., J. K. Schubert, P. Oertel, S. Kamysek, K. Taunk, P. Trefz, and W. Miekisch, "FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests", Scientific Reports, vol. 6, pp. 28029, Jun, 2016.
Link: http://dx.doi.org/10.1038/srep28029
Abstract
Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.