Callback Service


The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998


You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!


Found 7 results
[ Title(Desc)] Year
Filters: Author is Agarwal, Bishu  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
[Sulzer2013a] Sulzer, P., B. Agarwal, S. Juerschik, M. Lanza, A. Jordan, E. Hartungen, G. Hanel, L. Märk, T. D. Märk, R. González-Méndez, et al., "Applications of switching reagent ions in proton transfer reaction mass spectrometric instruments for the improved selectivity of explosive compounds", International Journal of Mass Spectrometry, vol. 354–355: Elsevier, 2013.
<p>Here we demonstrate the use of a switchable reagent ion proton transfer reaction mass spectrometry (SRI-PTR-MS) instrument to improve the instrument&#39;s selectivity for the detection of the explosive compounds 2,4,6 trinitrotoluene (TNT), 1,3,5 trinitrobenzene (TNB), pentaerythritol tetranitrate (PETN), and cyclotrimethylenetrinitramine (RDX). Selectivity is improved owing to the production of different product ions resulting from changes in the reagent ion-molecule chemistry. To be of use as an analytical tool for homeland security applications, it is important that the reagent ions (and hence product ions) can be rapidly changed (within seconds) from H3O+ to another dominant ion species if the technology is to be acceptable. This paper presents measurements that show how it is possible to rapidly switch the reagent ion from H3O+ to either O2+ or NO+ to enhance selectivity for the detection of the four explosives named above. That switching reagent ions can be done quickly results from the fact that the recombination energies of O2+ and NO+ are less than the ionisation potential of H2O, i.e. charge transfer cannot occur which otherwise would result in ions that can react efficiently with water (e.g. H2O+ + H2O &rarr; H3O+ + OH) leading to H3O+ becoming the dominant reagent ion. Reaction processes observed are non-dissociative charge transfer (O2+ with TNT and TNB), dissociative charge transfer (O2+ with TNT) and adduct formation (NO+ with PETN and RDX). O2+ is found to be unreactive with PETN and RDX, and under the conditions operating in the reaction region of the PTR-MS only a low signal associated with NO+&middot;TNT was observed. No NO+&middot;TNB was detected.</p>
[Sulzer2012a] Sulzer, P., S. Juerschik, B. Agarwal, T. Kassebacher, E. Hartungen, A. Edtbauer, F. Petersson, J. Warmer, G. Holl, D. Perry, et al., "Designer Drugs and Trace Explosives Detection with the Help of Very Recent Advancements in Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)", Future Security: Springer, pp. 366–375, 2012.
At the "Future Security 2011" we presented an overview of our studies on the "Detection and Identification of Illicit and Hazardous Substances with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)" including first results on explosives, chemical warfare agents and illicit and prescribed drugs detection. Since then we have considerably extended these preliminary studies to the detection of defined traces of some of the most common explosives, namely TNT, PETN, TATP, and DATP deposited into aluminum foam bodies, and to the detection of a number of novel and widely unknown designer drugs: ethylphenidate, 4-fluoroamphetamine and dimethocaine. Moreover, we have dramatically improved our time-of-flight based PTR-MS instruments by substantially increasing their sensitivity and hence lowering the detection limit, making them even more suitable and applicable to threat agents with extremely low vapour pressures. Data from measurements on certified gas standards are presented in order to underline these statements. The data demonstrate that, in comparison to the first generation instruments, a gain of one order of magnitude in terms of sensitivity and detection limit has been obtained.
[Kassebacher2012] Kassebacher, T., P. Sulzer, S. Juerschik, B. Agarwal, F. Petersson, E. Hartungen, H. Seehauser, and T. D. Maerk, "Detecting and Quantifying Toxic Industrial Compounds (TICs) with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS)", Future Security: Springer, pp. 438–447, 2012.
In the course of the FP7-SEC project "SPIRIT" (Safety and Protection of built Infrastructure to Resist Integral Threats) we focused our research with Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) on C-agents, specifically Toxic Industrial Compounds (TICs). Most TICs are readily available and represent a considerable threat when used in terroristic attacks. We show the principal procedure of PTR-MS detection measurements on two chemicals, namely phosgene and chloroacetone. With studies of the former we want to point out principle differences between measurements on a quadrupole mass filter based and a Time-of-Flight-based PTR-MS instrument and point out the respective benefits and drawbacks. For the latter we present the results of a diluted headspace measurement and illustrate the connection with security standards in buildings.
[1642] W Acton, J., M. Lanza, B. Agarwal, S. Jürschik, P. Sulzer, K. Breiev, A. Jordan, E. Hartungen, G. Hanel, L. Märk, et al., "Headspace analysis of new psychoactive substances using a Selective Reagent Ionisation-Time of Flight-Mass Spectrometer.", Int J Mass Spectrom, vol. 360, pp. 28–38, Mar, 2014.
<p>The rapid expansion in the number and use of new psychoactive substances presents a significant analytical challenge because highly sensitive instrumentation capable of detecting a broad range of chemical compounds in real-time with a low rate of false positives is required. A Selective Reagent Ionisation-Time of Flight-Mass Spectrometry (SRI-ToF-MS) instrument is capable of meeting all of these requirements. With its high mass resolution (up to m/Δm of 8000), the application of variations in reduced electric field strength (E/N) and use of different reagent ions, the ambiguity of a nominal (monoisotopic) m/z is reduced and hence the identification of chemicals in a complex chemical environment with a high level of confidence is enabled. In this study we report the use of a SRI-ToF-MS instrument to investigate the reactions of H3O(+), O2 (+), NO(+) and Kr(+) with 10 readily available (at the time of purchase) new psychoactive substances, namely 4-fluoroamphetamine, methiopropamine, ethcathinone, 4-methylethcathinone, N-ethylbuphedrone, ethylphenidate, 5-MeO-DALT, dimethocaine, 5-(2-aminopropyl)benzofuran and nitracaine. In particular, the dependence of product ion branching ratios on the reduced electric field strength for all reagent ions was investigated and is reported here. The results reported represent a significant amount of new data which will be of use for the development of drug detection techniques suitable for real world scenarios.</p>
[Sulzer2012] Sulzer, P., F. Petersson, B. Agarwal, K. H. Becker, S. Juerschik, T. D. Maerk, D. Perry, P. Watts, and C. A. Mayhew, "Proton transfer reaction mass spectrometry and the unambiguous real-time detection of 2,4,6 trinitrotoluene.", Anal Chem, vol. 84, no. 9: Ionicon Analytik Gesellschaft m.b.H., Eduard-Bodem-Gasse 3, A-6020 Innsbruck, Austria., pp. 4161–4166, May, 2012.
Fears of terrorist attacks have led to the development of various technologies for the real-time detection of explosives, but all suffer from potential ambiguities in the assignment of threat agents. Using proton transfer reaction mass spectrometry (PTR-MS), an unusual bias dependence in the detection sensitivity of 2,4,6 trinitrotoluene (TNT) on the reduced electric field (E/N) has been observed. For protonated TNT, rather than decreasing signal intensity with increasing E/N, which is the more usual sensitivity pattern observed in PTR-MS studies, an anomalous behavior is first observed, whereby the signal intensity initially rises with increasing E/N. We relate this to unexpected ion-molecule chemistry based upon comparisons of measurements taken with related nitroaromatic compounds (1,3,5 trinitrobenzene, 1,3 dinitrobenzene, and 2,4 dinitrotoluene) and electronic structure calculations. This dependence provides an easily measurable signature that can be used to provide a rapid highly selective analytical procedure to minimize false positives for the detection of TNT. This has major implications for Homeland Security and, in addition, has the potential of making instrumentation cost-effective for use in security areas. This study shows that an understanding of fundamental ion-molecule chemistry occurring in low-pressure drift tubes is needed to exploit selectivity and sensitivity for analytical purposes.
[Lindinger2013] Lindinger, C., L. Märk, P. Sulzer, S. Juerschik, B. Agarwal, C. A. Mayhew, and T. D. Märk, "Proton-Transfer-Reaction Mass Spectrometry: Increased Selectivity in Explosives and Designer Drugs Detection", : IONICON Analytik, 2013.
[Juerschik2012] Juerschik, S., B. Agarwal, T. Kassebacher, P. Sulzer, C. A. Mayhew, and T. D. Märk, "Rapid and facile detection of four date rape drugs in different beverages utilizing proton transfer reaction mass spectrometry (PTR-MS).", J Mass Spectrom, vol. 47, no. 9: IONICON Analytik GmbH., Eduard-Bodem-Gasse 3, 6020, Innsbruck, Austria., pp. 1092–1097, Sep, 2012.
In this work, we illustrate the application of proton transfer reaction mass spectrometry (PTR-MS) in the field of food and drink safety. We present proof-of-principle measurements of four different drinks (water, tea, red wine and white wine) each spiked separately with four different date rape drugs (chloral hydrate, tricholorethanol, γ-butyrolactone and butanediol). At first, the ideal PTR-MS operating conditions (reduced electric field strength and monitoring the most abundant [fragment] ion) for detection of the drugs were determined utilizing a time-of-flight-based PTR-MS instrument. We then dissolved small quantities of the drugs (below the activation threshold for effects on humans) into the various types of drinks and detected them using a quadrupole-based PTR-MS instrument via two different sampling methods: (1) dynamic headspace sampling and (2) direct liquid injection. Both methods have their advantages and drawbacks. Only with dynamic headspace sampling can rape drug contaminations be detected within a timeframe of seconds, and therefore, this method is the most promising use of PTR-MS as a fast, sensitive and selective monitor for the detection of food and drink contamination.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:


Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.


Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics


Download the latest version of the IONICON publication database as BibTeX.