Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 2 results
Title [ Year(Asc)]
Filters: Author is Tani, A  [Clear All Filters]
2010
[Juerschik2010] Juerschik, S., A. Tani, P. Sulzer, S. Haidacher, A. Jordan, R. Schottkowsky, E. Hartungen, G. Hanel, H. Seehauser, L. Märk, et al., "Direct aqueous injection analysis of trace compounds in water with proton-transfer-reaction mass spectrometry (PTR-MS)", International Journal of Mass Spectrometry, vol. 289, no. 2: Elsevier, pp. 173–176, 2010.
Link: http://www.sciencedirect.com/science/article/pii/S1387380609003406
Abstract
Here we present proof-of-principle investigations on a novel inlet system for proton-transfer-reaction mass spectrometry (PTR-MS) that allows for the analysis of trace compounds dissolved in water. The PTR-MS technique offers many advantages, such as real-time analysis, online quantification, no need for sample preparation, very low detection limits, etc.; however it requires gas phase samples and therefore liquid samples cannot be investigated directly. Attempts to measure trace compounds in water that have been made so far are mainly headspace analysis above the water surface and membrane inlet setups, which both are well suitable for certain applications, but also suffer from significant disadvantages. The direct aqueous injection (DAI) technique which we will discuss here turns out to be an ideal solution for the analysis of liquid samples with PTR-MS. We show that we can detect trace compounds in water over several orders of magnitude down to a concentration level of about 100 pptw, while only consuming about 100 μl of the sample. The response time of the setup is about 20 s and can therefore definitely be called “online”. Moreover the method is applicable to the analysis of all substances and not limited by the permeability of a membrane.
2002
[Hewitt2002] C Hewitt, N., S. Hayward, and A. Tani, "The application of proton transfer reaction-mass spectrometry (PTR-MS) to the monitoring and analysis of volatile organic compounds in the atmosphere", J. Environ. Monit., vol. 5, no. 1: The Royal Society of Chemistry, pp. 1–7, 2002.
Link: http://pubs.rsc.org/en/content/articlepdf/2003/em/b204712h
Abstract
Proton transfer reaction-mass spectrometry (PTR-MS) is a new and emerging technique for the measurement and monitoring of volatile organic compounds (VOCs) at low concentrations in gaseous samples in more-or-less real time. Utilising chemical ionisation, it combines the desirable attributes of high sensitivity and short integration times with good precision and accuracy. Recently it has been exploited in applications related to atmospheric science. Here, the principles of operation of the PTR-MS are described, its advantages and disadvantages discussed, its inherent uncertainties highlighted, some of its uses in atmospheric sciences reviewed, and some suggestions made on its future application to atmospheric chemistry.

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

Lists with PTR-MS relevant publications of the University of Innsbruck can be found here: Atmospheric and indoor air chemistry, IMR, Environmental Physics and Nano-Bio-Physics

 

Download the latest version of the IONICON publication database as BibTeX.