Callback Service

Undefined

The world's leading PTR-MS company

Providing ultra-sensitive solutions for real-time trace gas analysis since 1998

Navigation

You are here

Scientific Articles - PTR-MS Bibliography

Welcome to the new IONICON scientific articles database!

Publications

Found 701 results
Title [ Year(Asc)]
2015
[1582] Beale, R., J. L. Dixon, T. J. Smyth, and P. D. Nightingale, "Annual study of oxygenated volatile organic compounds in UK shelf waters", Marine Chemistry, vol. 171, pp. 96¬106, Apr, 2015.
Link: http://dx.doi.org/10.1016/j.marchem.2015.02.013
Abstract
We performed an annual study of oxygenated volatile organic compound (OVOC) seawater concentrations at a site off Plymouth, UK in the Western English Channel over the period of February 2011–March 2012. Acetone concentrations ranged from 2–10 nM (nanomole/L) in surface waters with a maximum observed in summer. Concentrations correlated positively with net shortwave radiation and UV light, suggestive of photochemically linked acetone production. We observed a clear decline in acetone concentrations below the mixed layer. Acetaldehyde varied between 4–37 nM in surface waters with higher values observed in autumn and winter. Surface concentrations of methanol ranged from 16–78 nM, but no clear annual cycle was observed. Methanol concentrations exhibited considerable inter-annual variability. We estimate consistent deposition to the sea surface for acetone and methanol but that the direction of the acetaldehyde flux varies during the year
[1612] Feilberg, A., P. Bildsoe, and T. Nyord, "Application of PTR-MS for measuring odorant emissions from soil application of manure slurry.", Sensors (Basel), vol. 15, pp. 1148–1167, 2015.
Link: http://dx.doi.org/10.3390/s150101148
Abstract
<p>Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed.</p>
[1644] Stojić, A.., S. S Stojić, A.. Šoštarić, L.. Ilić, Z.. Mijić, and S.. Rajšić, "Characterization of VOC sources in an urban area based on PTR-MS measurements and receptor modelling.", Environ Sci Pollut Res Int, May, 2015.
Link: http://dx.doi.org/10.1007/s11356-015-4540-5
Abstract
<p>In this study, the concentrations of volatile organic compounds were measured by the use of proton transfer reaction mass spectrometry, together with NO x , NO, NO2, SO2, CO and PM10 and meteorological parameters in an urban area of Belgrade during winter 2014. The multivariate receptor model US EPA Unmix was applied to the obtained dataset resolving six source profiles, which can be attributed to traffic-related emissions, gasoline evaporation/oil refineries, petrochemical industry/biogenic emissions, aged plumes, solid-fuel burning and local laboratories. Besides the vehicle exhaust, accounting for 27.6&nbsp;% of the total mixing ratios, industrial emissions, which are present in three out of six resolved profiles, exert a significant impact on air quality in the urban area. The major contribution of regional and long-range transport was determined for source profiles associated with petrochemical industry/biogenic emissions (40&nbsp;%) and gasoline evaporation/oil refineries (29&nbsp;%) using trajectory sector analysis. The concentration-weighted trajectory model was applied with the aim of resolving the spatial distribution of potential distant sources, and the results indicated that emission sources from neighbouring countries, as well as from Slovakia, Greece, Poland and Scandinavian countries, significantly contribute to the observed concentrations.</p>
[1645] Ciesa, F., I. Höller, W. Guerra, J. Berger, J. {Dalla Via}, and M. Oberhuber, "Chemodiversity in the Fingerprint Analysis of Volatile Organic Compounds (VOCs) of 35 Old and 7 Modern Apple Cultivars Determined by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) in Two Different Seasons.", Chem Biodivers, vol. 12, pp. 800–812, May, 2015.
Link: http://dx.doi.org/10.1002/cbdv.201400384
Abstract
<p>Volatile organic compounds (VOCs) are chemical species that play an important role in determining the characteristic aroma and flavor of fruits. Apple (Malus &times; domestica Borkh.) cultivars differ in their aroma and composition of VOCs. To determine varietal differences in the aroma profiles, VOCs emitted by 7 modern and 35 old apple cultivars were analyzed using Proton Transfer Reaction Mass Spectrometry (PTR-MS). PTR-MS is a rapid, reproducible, and non-destructive spectrometric technique for VOC analysis of single fruits, developed for direct injection analysis. In the present study, we analyzed the differences in the emission of VOCs from single fruits at harvest and after a storage period of 60&plusmn;10 days, followed by 3 d of shelf life. Our results show that VOC profile differences among apple cultivars were more pronounced after storage than at harvest. Furthermore, chemodiversity was higher in old cultivars compared to modern cultivars, probably due to their greater genetic variability. Our data highlight the importance of storage and shelf life are crucial for the development of the typical aroma and flavor of several apple cultivars. The validity of the method is demonstrated by comparison of two different harvest years.</p>
[1635] Kus, P. Marek, and S. van Ruth, "Discrimination of Polish unifloral honeys using overall PTR-{MS} and HPLC fingerprints combined with chemometrics", LWT - Food Science and Technology, vol. 62, pp. 69–75, Jun, 2015.
Link: http://dx.doi.org/10.1016/j.lwt.2014.12.060
Abstract
<p>A total of 62 honey samples of six floral origins (rapeseed, lime, heather, cornflower, buckwheat and black locust) were analysed by means of proton transfer reaction mass spectrometry (PTR-MS) and HPLCDAD. The data were evaluated by principal component analysis and k-nearest neighbours classification in order to examine consistent differences in analytical fingerprints between various honeys allowing their discrimination. The study revealed, that both techniques were able to distinguish the floral origins, however the HPLC shows advantage over PTR-MS providing substantially better differentiation of all analysed honey types. Especially HPLC fingerprints recorded at 210 nm were most suitable for discrimination of botanical origin with the use of chemometric analysis. The obtained classification rates were: 100%, 93%, 100%, 83%, 100%, 100% (HPLC) and 69%, 67%, 78%, 67%, 100%, 88% (PTR-MS) for rapeseed, lime, heather, cornflower, buckwheat and black locust, respectively. Even if performance of PTR-MS in general was lower than HPLC, it might be useful for fast on-line screening of buckwheat honey.</p>
[1624] Hu, L., D. B. Millet, M. Baasandorj, T. J. Griffis, K. R. Travis, C. W. Tessum, J. D. Marshall, W. F. Reinhart, T. Mikoviny, M. Müller, et al., "Emissions of C 6 -C 8 aromatic compounds in the United States: Constraints from tall tower and aircraft measurements", Journal of Geophysical Research: Atmospheres, vol. 120, pp. 826–842, Jan, 2015.
Link: http://dx.doi.org/10.1002/2014JD022627
Abstract
<p>We present two full years of continuous C6&ndash;C8 aromatic compound measurements by PTR-MS at the KCMP tall tower (Minnesota, US) and employ GEOS-Chem nested grid simulations in a Bayesian inversion to interpret the data in terms of new constraints on US aromatic emissions. Based on the tall tower data, we find that the RETRO inventory (year-2000) overestimates US C6&ndash;C8 aromatic emissions by factors of 2.0&ndash;4.5 during 2010&ndash;2011, likely due in part to post-2000 reductions. Likewise, our implementation of the US EPA&#39;s NEI08 overestimates the toluene flux by threefold, reflecting an inventory bias in non-road emissions plus uncertainties associated with species lumping. Our annual top-down emission estimates for benzene and C8 aromatics agree with the NEI08 bottom-up values, as does the inferred contribution from non-road sources. However, the NEI08 appears to underestimate on-road emissions of these compounds by twofold during the warm season. The implied aromatic sources upwind of North America are more than double the prior estimates, suggesting a substantial underestimate of East Asian emissions, or large increases there since 2000. Long-range transport exerts an important influence on ambient benzene over the US: on average 43% of its wintertime abundance in the US Upper Midwest is due to sources outside North America. Independent aircraft measurements show that the inventory biases found here for C6&ndash;C8 aromatics also apply to other parts of the US, with notable exceptions for toluene in California and Houston, Texas. Our best estimates of year-2011 contiguous US emissions are 206 (benzene), 408 (toluene), and 822 (C8 aromatics) GgC.</p>
[1637] Wood, E. C., B. W Knighton, E. C. Fortner, S. C. Herndon, T. B. Onasch, J. P. Franklin, D. R. Worsnop, T. R. Dallmann, D. R. Gentner, A. H. Goldstein, et al., "Ethylene glycol emissions from on-road vehicles.", Environ Sci Technol, vol. 49, pp. 3322–3329, Mar, 2015.
Link: http://dx.doi.org/10.1021/acs.est.5b00557
Abstract
<p>Ethylene glycol (HOCH2CH2OH), used as engine coolant for most on-road vehicles, is an intermediate volatility organic compound (IVOC) with a high Henry&#39;s law coefficient. We present measurements of ethylene glycol (EG) vapor in the Caldecott Tunnel near San Francisco, using a proton transfer reaction mass spectrometer (PTR-MS). Ethylene glycol was detected at mass-to-charge ratio 45, usually interpreted as solely coming from acetaldehyde. EG concentrations in bore 1 of the Caldecott Tunnel, which has a 4% uphill grade, were characterized by infrequent (approximately once per day) events with concentrations exceeding 10 times the average concentration, likely from vehicles with malfunctioning engine coolant systems. Limited measurements in tunnels near Houston and Boston are not conclusive regarding the presence of EG in sampled air. Previous PTR-MS measurements in urban areas may have overestimated acetaldehyde concentrations at times due to this interference by ethylene glycol. Estimates of EG emission rates from the Caldecott Tunnel data are unrealistically high, suggesting that the Caldecott data are not representative of emissions on a national or global scale. EG emissions are potentially important because they can lead to the formation of secondary organic aerosol following oxidation in the atmospheric aqueous phase.</p>
[1666] Yamada, H., S. Inomata, and H. Tanimoto, "Evaporative emissions in three-day diurnal breathing loss tests on passenger cars for the Japanese market", Atmospheric Environment, vol. 107, pp. 166–173, Apr, 2015.
Link: http://dx.doi.org/10.1016/j.atmosenv.2015.02.032
Abstract
<p>Breakthrough emissions that dominate diurnal evaporative emissions from gasoline vehicles were observed in continuous 3-day diurnal breathing loss (DBL) tests. These measurements were conducted on nine vehicles for the Japanese market. Two of these vehicles, made by US and European manufacturers, also meet regulations in their countries of origin. Four vehicles exhibited marked emissions caused by breakthrough emissions during the experimental period, all made by Japanese manufacturers. Using our experimental results, we estimate the total diurnal evaporative emissions from gasoline vehicles in Japan to be 32,792 t y&minus;1. The compositions of the breakthrough and permeation emissions were analyzed in real time using proton transfer reaction plus switchable reagent ion mass spectrometry to estimate the ozone formation potential for the evaporative emissions. The real-time measurements showed that the adsorption of hydrocarbons in a sealed housing evaporative determination unit can result in underestimation, when concentrations are only monitored before and after a DBL test. The composition analysis gave an estimated maximum incremental reactivity (MIR) 20% higher for the breakthrough emissions than for the gasoline that was tested, while the MIR for the permeation emissions was almost the same as the MIR for the fuel. Evaporative emissions from gasoline vehicles in Japan were found to contribute 4.2% to emissions from stationary sources using a mass-based estimate, or 6.1% of emissions from stationary sources using a MIR-based estimate.</p>
[1627] Sahu, L.K.., and P. Saxena, "High time and mass resolved PTR-TOF-MS measurements of VOCs at an urban site of India during winter: Role of anthropogenic, biomass burning, biogenic and photochemical sources", Atmospheric Research, vol. 164-165, pp. 84–94, Oct, 2015.
Link: http://dx.doi.org/10.1016/j.atmosres.2015.04.021
Abstract
<p>This study is based on the high mass and time-resolved measurements of seven VOCs using a PTR-TOF-MS instrument at an urban site of India during winter 2013. Daily levels of OVOCs and aromatics were in the ranges of 3.5&ndash;37 ppbv and 0.85&ndash;23 ppbv, respectively with OVOCs accounted for up to 80% of total measured VOCs. The impact of long-range transport from the polluted Indo-Gangetic Plain and clean Thar desert was observed during the episodes of high and low VOCs, respectively. VOCs exhibited strong diurnal variations with peaks during morning and evening hours and lowest in the afternoon. Relatively elevated aromatics during evening hours coincided with the lowest-OVOCs indicating influence of fresh vehicular emissions. Emission ratios of isoprene and OVOCs with respect to benzene followed the diurnal cycles of temperature and solar flux indicating role of biogenic and photochemical processes, respectively. Correlation study of VOCs with benzene suggests major contribution from anthropogenic and also from biogenic and secondary sources to some extent. The higher emission ratios of ∆methanol/∆acetonitrile correspond to the episodes of long-range transport from biomass burning sources located in the Indo-Gangetic Plain (IGP). In addition to the pattern of emission, the diurnal and day-to-day variations of VOCs were influenced by the local meteorological conditions and depth of planetary boundary layer (PBL).</p>
[1625] Hu, L., D. B. Millet, M. Baasandorj, T. J. Griffis, P. Turner, D. Helmig, A. J. Curtis, and J. Hueber, "Isoprene emissions and impacts over an ecological transition region in the US Upper Midwest inferred from tall tower measurements", Journal of Geophysical Research: Atmospheres, Mar, 2015.
Link: http://dx.doi.org/10.1002/2014JD022732
Abstract
<p>We present one year of in-situ PTR-MS measurements of isoprene and its oxidation products MVK and MACR from a 244 m tall tower in the US Upper Midwest, located at an ecological transition between isoprene-emitting deciduous forest and predominantly non-isoprene-emitting agricultural landscapes. We find that anthropogenic interferences (or anthropogenic isoprene) contribute on average 20% of the PTR-MS m/z 69 signal during summer daytime, whereas MVK+MACR interferences (m/z 71) are minor (7%). After removing these interferences, the observed isoprene and MVK+MACR abundances show pronounced seasonal cycles, reaching summertime maxima of &gt;2500 pptv (1-hour mean). The tall tower is impacted both by nearby and more distant regional isoprene sources, with daytime enhancements of isoprene (but little MVK+MACR) under southwest winds, and enhancements of MVK+MACR (but little isoprene) at other times. We find that the GEOS-Chem atmospheric model with the MEGANv2.1 biogenic inventory can reproduce the isoprene observations to within model uncertainty given improved land cover and temperature estimates. However, a 60% low model bias in MVK+MACR cannot be resolved, even across diverse model assumptions for NOx emissions, chemistry, atmospheric mixing, dry deposition, land cover, and potential measurement interferences. This implies that, while isoprene emissions in the immediate vicinity of the tall tower are adequately captured, they are underestimated across the broader region. We show that this region experiences a strong seasonal shift between VOC-limited chemistry during the spring and fall and NOx-limited or transitional chemistry during the summer, driven by the spatiotemporal distribution of isoprene emissions. Isoprene&#39;s role in causing these chemical shifts is likely underestimated due to the underprediction of its regional emissions.</p>
[1623] Baasandorj, M.., D.. B. Millet, L.. Hu, D.. Mitroo, and B.. J. Williams, "Measuring acetic and formic acid by proton-transfer-reaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences", Atmos. Meas. Tech., vol. 8, pp. 1303–1321, 2015.
Link: http://dx.doi.org/10.5194/amt-8-1303-2015
Abstract
We present a detailed investigation of the factors governing the quantification of formic acid (FA), acetic acid (AA), and their relevant mass analogues by proton-transfer-reaction mass spectrometry (PTR-MS), assess the underlying fragmentation pathways and humidity dependencies, and present a new method for separating FA and AA from their main isobaric interferences. PTR-MS sensitivities towards glycolaldehyde, ethyl acetate, and peroxyacetic acid at m/z 61 are comparable to that for AA; when present, these species will interfere with ambient AA measurements by PTR-MS. Likewise, when it is present, dimethyl ether can interfere with FA measurements. For a reduced electric field (E/N) of 125 Townsend (Td), the PTR-MS sensitivity towards ethanol at m/z 47 is 5–20 times lower than for FA; ethanol will then only be an important interference when present in much higher abundance than FA. Sensitivity towards 2-propanol is <1% of that for AA, so that propanols will not in general represent a significant interference for AA. Hydrated product ions of AA, glycolaldehyde, and propanols occur at m/z 79, which is also commonly used to measure benzene. However, the resulting interference for benzene is only significant when E/N is low (<= 100 Td). Addition of water vapor affects the PTR-MS response to a given compound by (i) changing the yield for fragmentation reactions and (ii) increasing the importance of ligand switching reactions. In the case of AA, sensitivity to the molecular ion increases with humidity at low E/N but decreases with humidity at high E/N due to water-driven fragmentation. Sensitivity towards FA decreases with humidity throughout the full range of E/N. For glycolaldehyde and the alcohols, the sensitivity increases with humidity due to ligand switching reactions (at low E/N) and reduced fragmentation in the presence of water (at high E/N). Their role as interferences will typically be greatest at high humidity. For compounds such as AA where the humidity effect depends strongly on the collisional energy in the drift tube, simple humidity correction factors (XR) will only be relevant for a specific instrumental configuration. We recommend E/N   125 Td as an effective condition for AA and FA measurements by PTR-MS, as it optimizes between the competing E/N-dependent mechanisms controlling their sensitivities and those of the interfering species. Finally, we present the design and evaluation of an online acid trap for separating AA and FA from their interfering species at m/z 61 and 47, and we demonstrate its performance during a field deployment to St. Louis, USA, during August–September of 2013.
[1655] Materic, D., M. Lanza, P. Sulzer, J. Herbig, D. Bruhn, C. Turner, N. Mason, and V. Gauci, "Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC", Analytical and Bioanalytical Chemistry, Aug, 2015.
Link: http://dx.doi.org/10.1007/s00216-015-8942-5
Abstract
<p>Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection &lt;1 pptv and the response times of approximately 100 ms), the selectivity of PTR-MS is still somewhat limited, as isomers cannot be separated. Recently, selectivity-enhancing measures, such as manipulation of drift tube parameters (reduced electric field strength) and using primary ions other than H3O+, such as NO+ and O2 +, have been introduced. However, monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research&mdash;PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.</p>
[1664] Zannoni, N.., V.. Gros, M.. Lanza, R.. Sarda, B.. Bonsang, C.. Kalogridis, S.. Preunkert, M.. Legrand, C.. Jambert, C.. Boissard, et al., "OH reactivity and concentrations of Biogenic Volatile Organic Compounds in a Mediterranean forest of downy oak trees", Atmos. Chem. Phys. Discuss., vol. 15, pp. 22047--22095, 2015.
Link: http://dx.doi.org/10.5194/acpd-15-22047-2015
Abstract
<p>Abstract. Understanding the processes between the biosphere and the atmosphere is challenged by the difficulty to determine with enough accuracy the composition of the atmosphere. Total OH reactivity, which is defined as the total loss of the hydroxyl radical in the atmosphere, has proved to be an excellent tool to identify indirectly the important reactive species in ambient air. High levels of unknown reactivity were found in several forests worldwide and were often higher than at urban sites. Such results demonstrated the importance of OH reactivity for characterizing two of the major unknowns currently present associated to forests: the set of primary emissions from the canopy to the atmosphere and biogenic compounds oxidation pathways. Previous studies also highlighted the need to quantify OH reactivity and missing OH reactivity at more forested sites. Our study presents results of a field experiment conducted during late spring 2014 at the forest site at the Observatoire de Haute Provence, OHP, France. The forest is mainly composed of downy oak trees, a deciduous tree species characteristic of the Mediterranean region. We deployed the Comparative Reactivity Method and a set of state-of-the-art techniques such as Proton Transfer Reaction-Mass Spectrometry and Gas Chromatography to measure the total OH reactivity, the concentration of volatile organic compounds and main atmospheric constituents at the site. We sampled the air masses at two heights: 2 m, i.e. inside the canopy, and 10 m, i.e. above the canopy, where the mean canopy height is 5 m. We found that the OH reactivity at the site mainly depended on the main primary biogenic species emitted by the forest, which was isoprene and to a lesser extent by its degradation products and long lived atmospheric compounds (up to 26 % during daytime). We determined that the daytime total measured reactivity equaled the calculated reactivity obtained from the concentrations of the compounds measured at the site. Hence, no significant missing reactivity is reported in this specific site, neither inside, nor above the canopy. However, during two nights we reported a missing fraction of OH reactivity up to 50 %, possibly due to unmeasured oxidation products. Our results confirm the weak intra canopy oxidation, already suggested in a previous study focused on isoprene fluxes. They also demonstrate how helpful can be the OH reactivity as a tool to clearly characterize the suite of species present in the atmosphere. We show that our result of reactivity is among the highest reported in forests worldwide and stress the importance to quantify OH reactivity at more and diverse Mediterranean forests.</p>
[1639] Romano, A., V. Capozzi, G. Spano, and F. Biasioli, "Proton transfer reaction-mass spectrometry: online and rapid determination of volatile organic compounds of microbial origin.", Appl Microbiol Biotechnol, vol. 99, pp. 3787–3795, May, 2015.
Link: http://dx.doi.org/10.1007/s00253-015-6528-y
Abstract
<p>Analytical tools for the identification and quantification of volatile organic compounds (VOCs) produced by microbial cultures have countless applications in an industrial and research context which are still not fully exploited. The various techniques for VOC analysis generally arise from the application of different scientific and technological philosophies, favoring either sample throughput or chemical information. Proton transfer reaction-mass spectrometry (PTR-MS) represents a valid compromise between the two aforementioned approaches, providing rapid and direct measurements along with highly informative analytical output. The present paper reviews the main applications of PTR-MS in the microbiological field, comprising food, environmental, and medical applications.</p>
[1626] Warneke, C.., P.. Veres, S.. M. Murphy, J.. Soltis, R.. A. Field, M.. G. Graus, A.. Koss, S.-M.. Li, R.. Li, B.. Yuan, et al., "PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013", Atmos. Meas. Tech., vol. 8, pp. 411–420, 2015.
Link: http://dx.doi.org/10.5194/amt-8-411-2015
Abstract
Here we compare volatile organic compound (VOC) measurements using a standard proton-transfer-reaction quadrupole mass spectrometer (PTR-QMS) with a new proton-transfer-reaction time of flight mass spectrometer (PTR-TOF) during the Uintah Basin Winter Ozone Study 2013 (UBWOS2013) field experiment in an oil and gas field in the Uintah Basin, Utah. The PTR-QMS uses a quadrupole, which is a mass filter that lets one mass to charge ratio pass at a time, whereas the PTR-TOF uses a time of flight mass spectrometer, which takes full mass spectra with typical 0.1 s–1 min integrated acquisition times. The sensitivity of the PTR-QMS in units of counts per ppbv (parts per billion by volume) is about a factor of 10–35 times larger than the PTR-TOF, when only one VOC is measured. The sensitivity of the PTR-TOF is mass dependent because of the mass discrimination caused by the sampling duty cycle in the orthogonal-acceleration region of the TOF. For example, the PTR-QMS on mass 33 (methanol) is 35 times more sensitive than the PTR-TOF and for masses above 120 amu less than 10 times more. If more than 10–35 compounds are measured with PTR-QMS, the sampling time per ion decreases and the PTR-TOF has higher signals per unit measuring time for most masses. For UBWOS2013 the PTR-QMS measured 34 masses in 37 s and on that timescale the PTR-TOF is more sensitive for all masses. The high mass resolution of the TOF allows for the measurements of compounds that cannot be separately detected with the PTR-QMS, such as oxidation products from alkanes and cycloalkanes emitted by oil and gas extraction. PTR-TOF masses do not have to be preselected, allowing for identification of unanticipated compounds. The measured mixing ratios of the two instruments agreed very well (R2 ≥ 0.92 and within 20%) for all compounds and masses monitored with the PTR-QMS.
[1576] Lanza, M., J. W. Acton, P. Sulzer, K. Breiev, S. Juerschik, A. Jordan, E. Hartungen, G. Hanel, L. Maerk, T. D. Maerk, et al., "Selective reagent ionisation-time of flight-mass spectrometry: a rapid technology for the novel analysis of blends of new psychoactive substances", Journal of Mass Spectrometry, vol. 50, pp. 427–431, 2015.
Link: http://dx.doi.org/10.1002/jms.3514
Abstract
In this study we demonstrate the potential of selective reagent ionisation-time of flight-mass spectrometry for the rapid and selective identification of a popular new psychoactive substance blend called ‘synthacaine’, a mixture that is supposed to imitate the sensory and intoxicating effects of cocaine. Reactions with H3O+ result in protonated parent molecules which can be tentatively assigned to benzocaine and methiopropamine. However, by comparing the product ion branching ratios obtained at two reduced electric field values (90 and 170 Td) for two reagent ions (H3O+ and NO+) to those of the pure chemicals, we show that identification is possible with a much higher level of confidence then when relying solely on the m/z of protonated parent molecules. A rapid and highly selective analytical identification of the constituents of a recreational drug is particularly crucial to medical personnel for the prompt medical treatment of overdoses, toxic effects or allergic reactions. Copyright © 2015 John Wiley & Sons, Ltd.
[1638] Lanza, M., J. W Acton, P. Sulzer, K. Breiev, S. Jürschik, A. Jordan, E. Hartungen, G. Hanel, L. Märk, T. D. Märk, et al., "Selective reagent ionisation-time of flight-mass spectrometry: a rapid technology for the novel analysis of blends of new psychoactive substances.", J Mass Spectrom, vol. 50, pp. 427–431, Feb, 2015.
Link: http://dx.doi.org/10.1002/jms.3514
Abstract
<p>In this study we demonstrate the potential of selective reagent ionisation-time of flight-mass spectrometry for the rapid and selective identification of a popular new psychoactive substance blend called &#39;synthacaine&#39;, a mixture that is supposed to imitate the sensory and intoxicating effects of cocaine. Reactions with H3O(+) result in protonated parent molecules which can be tentatively assigned to benzocaine and methiopropamine. However, by comparing the product ion branching ratios obtained at two reduced electric field values (90 and 170 Td) for two reagent ions (H3O(+) and NO(+)) to those of the pure chemicals, we show that identification is possible with a much higher level of confidence then when relying solely on the m/z of protonated parent molecules. A rapid and highly selective analytical identification of the constituents of a recreational drug is particularly crucial to medical personnel for the prompt medical treatment of overdoses, toxic effects or allergic reactions.</p>
[1651] R. del Rio, F., M.E.. OHara, A.. Holt, P.. Pemberton, T.. Shah, T.. Whitehouse, and C.A.. Mayhew, "Volatile Biomarkers in Breath Associated With Liver Cirrhosis - Comparisons of Pre- and Post-liver Transplant Breath Samples", EBioMedicine, Jul, 2015.
Link: http://dx.doi.org/10.1016/j.ebiom.2015.07.027
Abstract
Background: The burden of liver disease in the UK has risen dramatically and there is a need for improved diagnostics. Aims: To determine which breath volatiles are associated with the cirrhotic liver and hence diagnostically useful. Methods: A two-stage biomarker discovery procedure was used. Alveolar breath samples of 31 patients with cirrhosis and 30 healthy controls were mass spectrometrically analysed and compared (stage 1). 12 of these patients had their breath analysed after liver transplant (stage 2). Five patients were followed longitudinally as in-patients in the posttransplant period. Results: Seven volatileswere elevated in the breath of patients versus controls. Of these, five showed statistically significant decrease post-transplant: limonene, methanol, 2-pentanone, 2-butanone and carbon disulfide. On an individual basis limonene has the best diagnostic capability (the area under a receiver operating characteristic curve (AUROC) is 0.91), but this is improved by combining methanol, 2-pentanone and limonene (AUROC curve 0.95). Following transplant, limonene shows wash-out characteristics. Conclusions: Limonene,methanol and 2-pentanone are breathmarkers for a cirrhotic liver. This study raises the potential to investigate these volatiles asmarkers for early-stage liver disease. Bymonitoring the wash-out of limonene following transplant, graft liver function can be non-invasively assessed.
2014
[1478] Schmidberger, T., R. Gutmann, K. Bayer, J. Kronthaler, and R. Huber, "Advanced online monitoring of cell culture off-gas using proton transfer reaction mass spectrometry", Biotechnology Progress, pp. n/a–n/a, 2014.
Link: http://dx.doi.org/10.1002/btpr.1853
Abstract
<p>Mass spectrometry has been frequently applied to monitor the O2 and CO2 content in the off-gas of animal cell culture fermentations. In contrast to classical mass spectrometry the proton transfer reaction mass spectrometry (PTR-MS) provides additional information of volatile organic compounds by application of a soft ionization technology. Hence, the spectra show less fragments and can more accurately assigned to particular compounds. In order to discriminate between compounds of non-metabolic and metabolic origin cell free experiments and fed-batch cultivations with a recombinant CHO cell line were conducted. As a result, in total eight volatiles showing high relevance to individual cultivation or cultivation conditions could be identified. Among the detected compounds methanethiol, with a mass-to-charge ratio of 49, qualifies as a key candidate in process monitoring due to its strong connectivity to lactate formation. Moreover, the versatile and complex data sets acquired by PTR MS provide a valuable resource for statistical modeling to predict non direct measurable parameters. Hence, partial least square regression was applied to the complete spectra of volatiles measured and important cell culture parameters such as viable cell density estimated (R2&thinsp;=&thinsp;0.86). As a whole, the results of this study clearly show that PTR-MS provides a powerful tool to improve bioprocess-monitoring for mammalian cell culture. Thus, specific volatiles emitted by cells and measured online by the PTR-MS and complex variables gained through statistical modeling will contribute to a deeper process understanding in the future and open promising perspectives to bioprocess control. &copy; 2014 American Institute of Chemical Engineers Biotechnol. Prog., 2014</p>
[1516] Misztal, P.. K., T.. Karl, R.. Weber, H.. H. Jonsson, A.. B. Guenther, and A.. H. Goldstein, "Airborne flux measurements of biogenic volatile organic compounds over California", Atmospheric Chemistry and Physics Discussions, vol. 14, pp. 7965–8013, Mar, 2014.
Link: http://www.atmos-chem-phys-discuss.net/14/7965/2014/acpd-14-7965-2014.html
Abstract
<p>Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over 10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate &quot;instantaneous&quot; fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using &quot;racetrack&quot; profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 &plusmn; 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m&minus;2 h&minus;1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, high concentrations of methanol and monoterpenes were found above some of these regions. These observations demonstrate the ability to measure fluxes from specific sources by eddy covariance from an aircraft, and suggest the utility of measurements using fast response chemical sensors to constrain emission inventories and map out source distributions for a much broader array of trace gases than was observed in this study. This paper reports the first regional direct eddy covariance fluxes of isoprene. The emissions of VOCs measured from aircraft with 2 km spatial resolution can quantify the distribution of major sources providing the observations required for testing statewide emission inventories of these important trace gases. These measurements will be used in a future study to assess BVOC emission models and their driving variable datasets.</p>
[1560] Jankowski, M. Jan, R. Olsen, C. Nielsen, Y. Thomassen, and P. Molander, "The applicability of proton transfer reaction-mass spectrometry (PTR-{MS}) for determination of isocyanic acid ({ICA}) in work room atmospheres", Environmental Science: Processes & Impacts, 2014.
Link: http://dx.doi.org/10.1039/C4EM00363B
Abstract
<p>A method is presented for the real-time quantitative determination of isocyanic acid (ICA) in air using proton transfer reaction-mass spectrometry (PTR-MS). Quantum mechanical calculations were performed to establish the ion-polar molecule reaction rate of ICA and other isocyanates. The PTR-MS was calibrated against different ICA air concentrations and humidity conditions using Fourier transform-infrared spectroscopy (FT-IR) as quantitative reference. Based on these experiments a simple humidity dependant model was derived for correction of the PTR-MS response for ICA. The corrected PTR-MS data was linearly correlated (R2 &gt; 0.99) with the data acquired by FT-IR. The PTR-MS instrumental limit of detection (LOD) for ICA was 2.3 ppb. Humid atmospheres resulted in LODs of 3.4 and 7.8 ppb, at an absolute humidity (AH) of 4.0 and 15.5 g m-3, respectively. Furthermore, off-line sampling using denuder and impinger samplers using di-n-butylamine (DBA) as derivatization reagent was compared with PTR-MS measurements in a dynamically generated standard ICA atmosphere. Denuder (n = 4) and impinger (n = 4) sampling subsequent to liquid chromatography mass spectrometry (LC-MS) determination compared to corrected PTR-MS data resulted in recoveries of 79.6 (8.1 % RSD) and 99.9 (9.3 % RSD) %, respectively. Measurements of ICA from thermally decomposed cured 1,6-hexamethylene diisocyanate (HDI)-paint was performed used PTR-MS and denuder (n = 3) sampling. The relation between the average ICA responses using denuders (34.4 ppb) and PTR-MS (42.6 ppb) was 80.6 %, which coincided well with the relative recovery obtained from the controlled laboratory experiments using dynamically generated ICA atmospheres (79.6 %). The variability in ICA air concentration during the welding process (170 % RSDPTR-MS) illustrated the need for real-time measurements.</p>
[1636] Jankowski, M. Jan, R. Olsen, C. Jørgen Nielsen, Y. Thomassen, and P. Molander, "The applicability of proton transfer reaction-mass spectrometry (PTR-MS) for determination of isocyanic acid (ICA) in work room atmospheres.", Environ Sci Process Impacts, vol. 16, pp. 2423–2431, 2014.
Link: http://dx.doi.org/10.1039/c4em00363b
Abstract
<p>A method is presented for the real-time quantitative determination of isocyanic acid (ICA) in air using proton transfer reaction-mass spectrometry (PTR-MS). Quantum mechanical calculations were performed to establish the ion-polar molecule reaction rate of ICA and other isocyanates. The PTR-MS was calibrated against different ICA air concentrations and humidity conditions using Fourier transform-infrared spectroscopy (FT-IR) as quantitative reference. Based on these experiments a simple humidity dependant model was derived for correction of the PTR-MS response for ICA. The corrected PTR-MS data was linearly correlated (R(2) &gt; 0.99) with the data acquired by FT-IR. The PTR-MS instrumental limit of detection (LOD) for ICA was 2.3 ppb. Humid atmospheres resulted in LODs of 3.4 and 7.8 ppb, at an absolute humidity (AH) of 4.0 and 15.5 g m(-3), respectively. Furthermore, off-line sampling using denuder and impinger samplers using di-n-butylamine (DBA) as derivatization reagent was compared with PTR-MS measurements in a dynamically generated standard ICA atmosphere. Denuder (n = 4) and impinger (n = 4) sampling subsequent to liquid chromatography mass spectrometry (LC-MS) determination compared to corrected PTR-MS data resulted in recoveries of 79.6 (8.1% RSD) and 99.9 (9.3% RSD) %, respectively. Measurements of ICA from thermally decomposed cured 1,6-hexamethylene diisocyanate (HDI)-paint was performed using PTR-MS and denuder (n = 3) sampling. The relation between the average ICA responses using denuders (34.4 ppb) and PTR-MS (42.6 ppb) was 80.6%, which coincided well with the relative recovery obtained from the controlled laboratory experiments using dynamically generated ICA atmospheres (79.6%). The variability in ICA air concentration during the welding process (170% RSDPTR-MS) illustrated the need for real-time measurements.</p>
[1532] Schripp, T.., S.. Etienne, C.. Fauck, F.. Fuhrmann, L.. Märk, and T.. Salthammer, "Application of proton-transfer-reaction-mass-spectrometry for Indoor Air Quality research", Indoor Air, vol. 24, pp. 178–189, 2014.
Link: http://dx.doi.org/10.1111/ina.12061
Abstract
<p>In the field of Indoor Air Quality research, the measurement of volatile organic compounds (VOCs) demands instruments that are rapid, mobile, robust, highly sensitive and allow for simultaneous monitoring of multiple compounds. These instruments should also compensate for possible interferences from permanent gases and air humidity. Proton-transfer-reaction-mass-spectrometry (PTR-MS) has proved to be a valuable and promising technique that fits the mentioned requirements for a suitable online measuring device. In this study, five exemplary applications of PTR-MS are described: (i) release of paint additives during drying process, (ii) emission of VOCs from active hardcopy devices, (iii) reference material evaluation, (iv) diffusion studies, and (v) emission testing of building products. The examples are selected to illustrate possibilities and limitations of the PTR technique in this field of research. The quadruple-based PTR-QMS was able to determine the emission characteristics during the experiments, especially in case of depleting emission sources (e.g., reference material). This allows for chemometrical analysis of the measured release patterns and detection of underlying processes. However, PTR-QMS reaches a functional limit in case of compound identification. If identification of VOCs is necessary, the measurements need to be accompanied by GC/MS analytics or a PTR instrument with higher mass-resolution (e.g., PTR-TOF-MS).</p>
[1548] Aprea, E., L. Cappellin, F. Gasperi, F. Morisco, V. Lembo, A. Rispo, R. Tortora, P. Vitaglione, N. Caporaso, and F. Biasioli, "Application of PTR-TOF-{MS} to investigate metabolites in exhaled breath of patients affected by coeliac disease under gluten free diet", Journal of Chromatography B, vol. 966, pp. 208–213, Sep, 2014.
Link: http://dx.doi.org/10.1016/j.jchromb.2014.02.015
Abstract
<p>Coeliac disease (CD) is a common chronic inflammatory disorder of the small bowel induced in genetically susceptible people by the exposure to gliadin gluten. Even though several tests are available to assist the diagnosis, CD remains a biopsy-defined disorder, thus any non-invasive or less invasive diagnostic tool may be beneficial. The analysis of volatile metabolites in exhaled breath, given its non-invasive nature, is particularly promising as a screening tool of disease in symptomatic or non-symptomatic patients. In this preliminary study the proton transfer reaction time of flight mass spectrometry coupled to a buffered end-tidal on-line sampler to investigate metabolites in the exhaled breath of patients affected by coeliac disease under a gluten free diet was applied. Both H3O+ or NO+ were used as precursor ions. In our investigation no differences were found in the exhaled breath of CD patients compared to healthy controls. In this study, 33 subjects were enrolled: 16 patients with CD, all adhering a gluten free diet, and 17 healthy controls. CD patients did not show any symptom of the disease at the time of breath analysis; thus the absence of discrimination from healthy controls was not surprising.</p>
[1610] Tres, A., S. P. Heenan, and S. { van Ruth}, "Authentication of dried distilled grain with solubles (DDGS) by fatty acid and volatile profiling.", Lebenson Wiss Technol, vol. 59, pp. 215–221, Nov, 2014.
Link: http://dx.doi.org/10.1016/j.lwt.2014.05.044
Abstract
<p>Demand for ethanol substituted fuels from the utilisation of cereal based biofuel has resulted in an over production of dried distillers grains with solubles (DDGS) that are now readily available on the animal feed market. With this rapid emerging availability comes potential variability in the nutritional value of DDGS and possible risks of feed contaminants. Subsequently, the authentication and traceability of alternative animal feed sources is of high priority. In this study and as part of the EU research project &quot;Quality and Safety of Feeds and Food for Europe (QSAFFE FP7-KBBE-2010-4) an attempt was made to classify the geographical origin of cereal grains used in the production of DDGS material. DDGS material of wheat and corn origin were obtained from Europe, China, and the USA. Fatty acid profiles and volatile fingerprints were assessed by gas chromatography flame ionisation (GC-FID) and rapid proton transfer reaction mass spectrometry (PTR-MS) respectively. Chemometric analysis of fatty acid profiles and volatile fingerprints allowed for promising classifications of cereals used in DDGS material by geographical and botanical origin and enabled visual representation of the data. This objective analytical approach could be adapted for routine verification of cereal grains used in the production of DDGS material.</p>

Pages

Featured Articles

Download Contributions to the International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications:

 

Selected PTR-MS related Reviews

F. Biasioli, C. Yeretzian, F. Gasperi, T. D. Märk: PTR-MS monitoring of VOCs and BVOCs in food science and technology, Trends in Analytical Chemistry 30 (7) (2011).
Link

J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Measurement of Volatile Organic Compounds in the Earth's Atmosphere using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrometry Reviews, 26 (2007), 223-257.
Link

W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27 (1998), 347-375.
Link

 

PTR-MS Bibliography:

Lists with PTR-MS relevant publications of the University of Innsbruck;can be found at the websites of the Institute for Ion Physics and Applied Physics, workgroups: IMR, Environmental Physics and Nano-Bio-Physics

 

Our searchable publications database, hosted and updated by IONICON, predominately covers the application areas of instrumentation, technology, environmental research and food & flavor science, but is open to all PTR-MS related topics and we're looking for your results! Please submit your abstract.

Download the latest version of the IONICON publication database as BibTeX (LINK).