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Objectives 
• Develop a gas dilution unit to upgrade the PTR-TOF 8000 for exhaust analysis. 
• Compare measurements of benzene, toluene, ethylbenzene, and xylene (BTEX) in 

automotive exhaust using the PTR-MS with measurements utilizing ARB’s conventional GC-
FID method (SOP MLD 102/103) to verify potential automotive applications. 

• Conduct preliminary correlation analyses of real-time emission profiles from the PTR-MS 
and real-time profiles of engine parameters to assess sensitivity and responsiveness of the 
PTR-MS to engine and emission control events. 

Importance of VOC Quantification 
• Health issue: Toxicity of volatile organic compounds (VOCs) and their atmospheric 

photochemical reaction products 
• Air quality issues: Ozone formation and secondary organic aerosol (SOA) formation 

• Ionicon Analytik Ges.m.b.H. for technical supports and helpful discussions. 
• HSL test cell 3 staff members (ECARS, CARB) for performing vehicle tests. 
• Dr. Christopher Brandow (formerly with ECARS, CARB) for NMHC analysis 

with the GC-FID. 

• The PTR-MS was upgraded with a gas dilution unit  for exhaust testing. 
• The agreement between the GC-FID and the PTR-MS measurements for 

BTEX was within 15 %  for concentrations above 4 ppbv. 
• PTR-MS enables real-time measurements of selected exhaust VOC emissions 

which permits evaluation of engine and control technology events. 

Labile VOC and SVOC Quantification – Difficulties 
• Most of the conventional quantification methods for VOCs are offline, so a sample storage 

medium is required. 
• Loss of labile VOCs and SVOCs which occur during sample collection leads to 

underestimation of the target compounds concentration. 
• Derivatization product of acrolein in a 2,4-dinitrophenylhydrazine (DNPH) cartridge 

(acidified) is known to be unstable. 
• Naphthalene is known to have significant loss in a Tedlar bag. 

Gas Dilution Upgrade for the PTR-TOF 8000 

Experimental Methods – Vehicle Test Setup 
• 17 automotive vehicle exhaust samples from chassis dynamometer tests were analyzed. 
• Test cycles include Unified Cycle (UC), Federal Test Procedure (FTP), and Supplemental 

FTP which consists of 3 phases, 3 phases, and 1 phase, respectively. 
• PTR-MS was configured for online analysis. (1 second resolution; H3O+ primary ion) 
• GC-FID was carried out with offline analysis on samples collected in Tedlar bags; one bag 

sample was generated for each phase of a vehicle test. 

Comparison of the Measurements between PTR-MS and GC-FID 

Examples of 
Automotive Applications of 

Real-Time VOC Emission Analysis 
• Investigate potential errors introduced by real-time flow changes during vehicle 

test. 
• Develop methods for quantifying labile VOCs and SVOCs including acrolein, 

1,3-butadiene, and naphthalene. 
• Study different primary ions (O2

+ and NO+) for their applications in mobile 
source toxic compounds analysis. 

PTR-MS – Advantages and Disadvantages 
Advantages 

• Online analysis eliminates need for sample collection or derivatization. 
• Provides second-by-second concentration profiles, which are useful for evaluating 

impacts of control technologies that reduce toxic VOC emissions. 
• Does not require an authentic standard of the compounds of interest. This is a great 

advantage in the analysis for compounds without any reliable standard due to their 
toxicity or stability. 

Disadvantages 
• Linearity range of the PTR-MS was found to be up to ~700 ppbv of total reactive 

VOC, but peak VOC concentrations for vehicle tests typically reach the ppmv level. 
• PTR-MS may be saturated for some cold start or hard acceleration episodes during 

transient chassis dynamometer testing, and saturation will cause underestimation of 
the target compounds. 

• Gas dilution upgrade is 
developed in collaboration with 
the PTR-TOF 8000 
manufacturer, Ionicon Analytik 
Ges.m.b.H. 

• Ionicon PTR-Manager software 
is upgraded to monitor flows 
from all additional flow 
controllers and a meter. 

DF calculated from the flow rates and the PTR-MS signal for benzene 

• The dilution factor (DF) was calculated from the ratios of benzene standard gas signals which were 
measured prior to every vehicle test. (below left) 

• Differences between measured flow rates and those determined from benzene dilution increased 
significantly as the DF increased. (below right) 

Normalized PTR-MS signal for benzene (ncps) up to 14000 ppbv (left) and 700 ppbv (right) of total reactive VOC 

PTR-TOF 8000 with a gas dilution upgrade 

chassis dynamometer vehicle test setup 

Gas Dilution Upgrade Setup Dilution Factor Calculation 

PTR-MS signal for benzene with (blue) 
and without (red) dilution (DF = 11) 

flow rate (sccm) PTR-MS benzene 
signal (ncps) 

DF 
% difference 

dilution gas standard gas flow-base signal-base 
0.00 0.00 747.45 n/a n/a n/a 

499.94 125.02 152.72 5.00 4.89 2.20 
499.99 55.06 77.19 10.1 9.68 4.16 
500.00 26.40 39.06 19.9 19.1 4.02 
499.99 17.29 26.32 29.9 28.4 5.02 
500.01 10.28 16.24 49.6 46.0 7.26 
500.01 6.88 11.19 73.7 66.8 9.36 
500.01 5.19 8.38 97.3 89.2 8.32 

PTR-MS and GC-FID Comparison 
• Xylene and ethylbenzene concentrations from the GC-FID measurements were 

combined for comparison with the PTR-MS measurements, because those 
isomers cannot be distinguished in the PTR-MS analysis. 

• When the PTR-MS was saturated, the 
primary ion (H3O+) was depleted significantly 
as shown with red circles in the figure below. 

PTR-MS signal for the total ion count (TIC, 
m/z 25-497) and the primary ion (H3

18O+, m/z 21) Correlation of the measurements from the PTR-MS and the GC-FID 

• The PTR-MS was not set to automatically synchronize 
with the bag sampling device and the emission 
analyzers, so manual data coordination was necessary. 

• Synchronization 
was accomplished 
by aligning the 
peak pattern of 
the PTR-MS TIC 
and the total 
hydrocarbon 
(THC) 
measurements 
from the THC 
analyzer. 

TIC (m/z 21-497) signal from the PTR-MS and 
THC measurements from the THC analyzer 

Driving Cycle and Emission DPF Regeneration 

PTR-MS / GC-FID 
benzene 0.96 
toluene 0.96 

ethylbenzene 
and xylene 

1.15 

• The agreement between the 
measurements from two 
methods for BTEX were within 
15 % for concentrations above 
4 ppbv  

PTR-MS signals for selected VOCs and on-board 
diagnostics signals for exhaust gas temperature and 
pressure drop in a diesel particle filter for a light-duty 

diesel vehicle 

PTR-MS signals for selected VOCs and driving cycle (UC) 
for a light-duty gasoline vehicle 

Data Synchronization PTR-MS Saturation 
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